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Abstract

Microeconometric approaches to answer macroeconomic questions regularly use time
fixed effects. This leads to the well-known ‘missing intercept’ problem because fixed
effects soak up average aggregate effects. As such, these results cannot be used to directly
address policy questions requiring knowledge of policies’ aggregate effects. We present a
statistical approach that leverages knowledge of these microeconometric results to jointly
identify aggregate and idiosyncratic effects of changes in policy. We then apply our
methodology to study government spending multipliers (Nakamura and Steinsson, 2014).
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1 Introduction

Modern macroeconomic research relies increasingly on panel datasets featuring variation
across regions, households, or firms. This idiosyncratic variation allows researchers to leverage
microeconometric tools designed to credibly identify the effects of policies. A key part of
this toolkit is time fixed effects. These are helpful for identification because they remove the
effect of aggregate shocks that affect all variables simultaneously.

However, as is well recognized, time fixed effects also remove the aggregate response
to policy changes. As a result, these methods can only uncover the idiosyncratic or local
effects of policy changes net of those aggregate effects. Those tools are therefore inadequate
to directly answer questions about aggregate effects of policies. A typical response in the
literature is to use the estimates obtained with fixed effects to calibrate fully specified dynamic
equilibrium models (see, for example, Nakamura and Steinsson (2014)).1 While informative,
those strategies provide estimates of aggregate effects that depend on the specifics of the
structural model.

We propose a methodology to estimate the aggregate effects of policies by merging the
microeconometric tools that provide sharp identification at the idiosyncratic level with time-
series methods that estimate aggregate effects without the strong cross-equation restrictions
of dynamic equilibrium models. In particular, we show how to incorporate estimates of local
effects net of aggregate effects into a time series model that jointly describes the evolution of
aggregate and local economic outcomes. This allows us to simultaneously use variation in
both the cross-section and time series dimensions to sharpen estimates. Furthermore, our
approach allows researchers to combine the microeconometric approach with identification
assumptions traditionally used in the time series literature, such as zero, sign and magnitude
restrictions (Christiano et al., 1999; Uhlig, 2005; Canova and Nicolo, 2002; Faust, 1998;
Amir-Ahmadi and Drautzburg, 2021) on the impact of shocks, as well as instruments for
aggregate shocks (Mertens and Ravn, 2013; Plagborg-Møller and Wolf, 2021).

Intuitively, the method identifies aggregate shocks from the behavior of idiosyncratic
units by exploiting as input the effects estimated using microeconometric tools. For example,
suppose that a national government spending shock increases spending by more in Wisconsin
than in New York, and implies an increase in output in Wisconsin that is larger than in
New York by an amount estimated using microeconometric methods. We can then infer the
trajectory of that shock from the relative movements of government spending and output in
those two regions. This estimated aggregate shock can then be used to infer the aggregate

1An alternative pursued by Chodorow-Reich (2019, 2020) is to derive situations in which the estimated
local equilibrium effects can be interpreted as bounds on the aggregate or general equilibrium effects.
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output multiplier. In practice, we perform the estimation within a single Bayesian model.
This allows us to (i) not dogmatically impose results from the applied micro literature but
use them to inform priors, (ii) perform the estimation simultaneously, not sequentially, thus
making the best and consistent use of all information available, and (iii) to use priors for the
purpose of regularization (for example, the use of a Minnesota-type prior for coefficients in
our time series model (Doan et al., 1984)).

We demonstrate the methodology in an application. We revisit the famous Nakamura
and Steinsson (2014) analysis of fiscal multipliers across U.S. states. We use this application
to study the impact of various modeling choices we have made in the benchmark scenario
and provide evidence that the aggregate government spending multiplier is less than unity
with high probability. We disentangle where this result comes from, and while it is generally
robust, we do find that prior information is needed to arrive at meaningfully tight posterior
bands. We provide both statistical and economic foundations for this result. In particular, it
echoes results in Nakamura and Steinsson (2014), where the authors find that many different
structural models that imply vastly different aggregate multipliers are consistent with the
same local effects of aggregate feedback.
Although the missing intercept problem is distinct from other econometric issues related to
cross-sectional multipliers discussed by Canova (2022), our approach is general enough to
not fall victim to the issues discussed in that paper (i.e., we allow for heterogeneity across
cross-sectional units). Our paper is related but distinct from previous work on the missing
intercept problem in Wolf (2023), which provides results under which these micro-based local
effects can be added to a macro/time-series-based estimate of the aggregate effect to arrive
at the total effect at the local level. We instead leverage micro-based estimates to jointly
estimate aggregate and total local effects.
Sarto (2024) also leverages regional data to uncover aggregate effects, exploiting, as we
do, a factor structure in the data, but then combines this factor structure with exclusion
restrictions to achieve identification. Our approach is complementary in that it directly
leverages microeconometric estimates,and connects those results to the large literature on
identification in Vector Autoregressions (VARs) and the time-series literature more generally,
identification approaches from which can also be easily incorporated into our approach.
Furthermore, since we use a Bayesian approach, we have a natural avenue to introduce
regularization via priors, which can be helpful in high-dimensional parameter spaces such
as in our applications. Finally, our Bayesian approach allows us to dogmatically impose
exclusion restrictions along the lines of Sarto (2024) or use them to center a non-degenerate
prior. Interestingly, Sarto (2024) finds an aggregate government spending multiplier that
is broadly in line with our findings. The idea of exploiting variation at various levels of
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aggregation to identify effects at the aggregate level has recently become more popular -
Gabaix and Koijen (2023) show how to exploit variability in large cross-sectional units to
derive instrumental variables. A related full information approach is developed in Baumeister
and Hamilton (2023). Our approach can exploit information found in Bartik instruments
and, as such, builds on the growing literature studying these instruments (Bartik, 1991;
Goldsmith-Pinkham et al., 2020; Borusyak et al., 2021).
The remainder of the article is structured as follows: Section 2 highlights how microeconometric
studies deliver estimates of local effects and how they can be linked to aggregate effects.
Section 3 discusses our time series model that can leverage such estimates of local effects
for identification. Section 4 discusses the link between microeconometric identification and
identification in our approach in more detail. Section 5 provides an application of our
approach, building on Nakamura and Steinsson (2014). Section 6 provides Monte Carlo
evidence on the performance of our approach, and Section 7 concludes.

2 The Missing Intercept: An Example

To set the stage, we now build an economy inspired by Moll (2021), designed to discuss
the missing intercept problem. Using this example, we describe what objects are identified
from cross-sectional variation and how we can exploit this information to estimate both
aggregate effects and total effects for each cross-sectional unit. The example is purposefully
simplified for ease of exposition, with many of the special assumptions relaxed in the full
model described in Section 3.

For concreteness, the example revolves around the use of local data to estimate the effects
of government spending on output, though this is merely a matter of labeling variables. The
example can be easily recast for the problem of estimating the effect of wealth shocks on
employment or several other problems of interest to macroeconomists.

We consider a set of N regions (which in other examples could be sectors, households,
firms etc). In each region i ∈ {1, ..., N}, the output is determined by government spending in
the region i, git, as well as aggregate government spending Gt, regional-specific exogenous
factors εyit and other aggregate shocks ηYt such as shocks to Total Factor Productivity or
monetary policy.

yit = γgit + θGt + ηYt + εyit, (1)

where aggregate government spending is itself a function of shocks summarized in ηYt and an
aggregate government spending shock ηGt :
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Gt = ηGt + ρηYt

While local output depends on local government expenditures through the usual govern-
ment demand multiplier channels, captured in γ, it may also depend on aggregate spending
Gt either because there is an endogenous monetary response, through trade between regions,
or other country-wide general equilibrium channels with those captured in θ.

Panel studies often focus on estimating γ. Estimates of γ may be of interest for several
reasons. First, they may be useful in their own right for the evaluation of local policies.
Second, they can provide discipline to identify deep parameters of interest, as in Nakamura
and Steinsson (2014). Third, in combination with separate estimates of θ, they provide the
local impact of aggregate fiscal shocks, as in Wolf (2023). Finally, if one is able to a priori put
a sign to θ, they provide useful bounds on the total effects of those aggregate fiscal shocks, as
proposed by Chodorow-Reich (2019).

The main identification challenge for panel studies is that, either because of omitted
variables or reverse causation, git may be determined by the same idiosyncratic and aggregate
factors that determine yit, namely, for all i ∈ {1, ..., N}

git = βiGt + ξεyit + εgit. (2)

where now εgit are idiosyncratic government spending shocks affecting local government
spending, and βi and ξ are coefficients.

We define aggregate variables as averages of the idiosyncratic variables, as is appropriate
in most applications where variables are expressed in growth rates, logarithms, or per-capita
terms. We assume, following Moll (2021), that local shocks do not have a direct effect on
aggregate outcomes: 1

N

∑N
i=1 ε

g
it = 1

N

∑N
i=1 ε

y
it = 0. As a result, we can write aggregate

variables as

1

N

N∑
i=1

git = Gt = ηGt + ρηYt (3)

1

N

N∑
i=1

yit = Yt = (γ + θ)Gt + ηYt (4)

where we use the fact that the aggregation requires 1
N

∑
i βi = 1. This implies that a time-

fixed effect for local output and government spending recovers the aggregate version of those
variables.
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A common strategy in panel studies is as follows:

1. Use time-effects to control for the effects of ηyt , the common shocks to git and yit,
obtaining the system of equations

yit − Yt = γ(git −Gt) + εyit (5)

git −Gt = (βi − 1)Gt + ξεyit + εgit (6)

2. Obtain a measure of βi − 1. For example, Nakamura and Steinsson (2014) use either
the coefficients of an OLS regression of git−Gt on Gt or shares of military expenditures
in local GDP.

3. Use (βi − 1)Gt as an instrument for git −Gt in equation (5)

This strategy successfully identifies γ under the assumption that βi is uncorrelated with
εyit.

The missing intercept problem occurs because macroeconomic policy analysis requires
understanding the total effect of government spending on output, γ + θ. However, in the
methodology above, the term θ is absorbed by time effects and cannot be estimated.

To estimate θ one needs to bring attention back to the aggregate equations (3) and (4).
However, inference is complicated by the fact that both Gt and Yt are functions of the same
set of macroeconomic shocks, summarized in ηYt . Prior literature on fiscal policy has focused
on imposing additional identification assumptions on aggregate data. A particularly fruitful
strategy has been to find instruments that plausibly generate variations in Gt directly and on Yt

only indirectly, through Gt. For example, Ramey (2011); Auerbach and Gorodnichenko (2012)
use instruments such as military spending for the case of government spending multiplier.

Our main contribution is to propose an alternative strategy that does not require iden-
tification assumptions beyond what is used to estimate γ in the panel approach above. To
understand our strategy, it is useful to rewrite equations in terms of shocks only, with the
equations for deviations of g and y from aggregates, (6) and (5), rewritten as:

git −Gt = Bi
GGη

G
t +Bi

GY η
Y
t + ξεyit + εgit, (7)

yit − Yt = Bi
Y Gη

G
t +Bi

Y Y η
Y
t + (1 + γξ)εyit + γεgit (8)

where Bi
GG = (βi − 1)λ and Bi

GY = (βi − 1)ρ, Bi
Y G = γBi

GG and Bi
Y Y = γBi

GY .
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From these equations, it is apparent that git−Gt and yit−Yt have a factor structure. That
is, they are functions of aggregate shocks ηGt and ηYt that affect values in each region with
different loadings (Bi

GG, B
Y
GY etc) and idiosyncratic shocks εyit and εgit which are region-specific.

Econometric theory makes clear that one can identify the space spanned by the aggregate
factors ηGt and ηYt with very little information beyond the time-series for the observed variables
and the number of factors.

The key identification challenge is disentangling ηGt from ηYt . Fortunately, this can be
done given information on Bi

GG and Bi
Y G. Those are functions of βi used to construct the

instrument in the panel estimation described above and of the partial effect γ, obtained in
that same estimation. As shown in Section 4, that information is sufficient for identification
of ηGt .2 The estimate of ηGt can then be used to obtain an estimate of γ + θ from aggregate
data.

The model described above is simplified for expositional purposes. It assumes that ηYt

and ηGt can be differenced out from equations (1) and (2), which may be generally not true
since responses to aggregate shocks and the general equilibrium feedback through θGt may
be heterogeneous. This complicates the estimation of γ in microeconometric studies, perhaps
requiring the introduction of additional controls or other corrections (as emphasized by
Canova (2022)). However, they do not affect our ability to identify ηGt given those estimates.
The model also does not allow for dynamics, which can matter for estimates of the government
spending multiplier or other macroeconomic effects. Lastly, one may be concerned about error
in the βi and γ’s obtained from microeconometric studies, or that the γ’s are heterogeneous
across units.

In the next section, we develop a more flexible framework featuring a richer version of
local (1, 2) and aggregate (3, 4) equations that allow for those complications. In particular,
the model incorporates persistence, heterogeneous responses to other aggregate shocks across
cross-sectional units, imperfect knowledge of Bi

GG and Bi
Y G.3 It also safeguards against

misspecification or estimation error in Bi
GG and Bi

GY by using this information to establish a
prior that we use for Bayesian inference, rather than imposing those dogmatically on either
the aggregate or idiosyncratic effects of this shock.

The objects of interest in our time series model are the impulse responses to an aggregate
government spending shock ηGt and the ratio of those impulse responses for output and
aggregate government spending – the fiscal multiplier. In the example in this section, the
fiscal multiplier equals γ + θ, which was the focus of this discussion.

2The required assumption is that there is indeed heterogeneity in λG
i , similar to assumptions in Wolf

(2023) and Sarto (2024)
3In practice, our approach jointly estimates parameters for the entire system at once.
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3 Time Series Model

We now describe the full time-series model, which generalizes the model in Matthes and
Schwartzman (2023).

The model provides a flexible data-generating process that jointly describes micro- and
macroeconomic dynamics. It consists of a block for aggregate data and blocks for idiosyncratic
units such as localities, sectors, etc. In both levels of aggregation, we use variants of Vector
Autoregressive (VAR) models. The blocks are linked via aggregate variables and structural
shocks, allowing for rich patterns of comovement while remaining parsimonious in terms of
parametrization.

For each of I idiosyncratic units, we track K unit-specific variables such as output,
expenditures, or prices. Those can be combined into an equal number of aggregate variables,
to which we can add aggregate-only variables such as policy interest rates, national government
spending, or stock price indices, for a total of N > K aggregate variables.

The model explains those variables in terms of R aggregate shocks with R << I as well
as shocks specific to each aggregate or idiosyncratic variables. We now describe the aggregate
and idiosyncratic blocks in detail.

Block 1: Aggregate

The aggregate block can be written, in vector form, as

Xagg
t = µagg +

L∑
l=1

Aagg
l Xagg

t−l +Baggηt + εt, (9)

where Xagg
t is an N dimensional vector collecting observed aggregate endogenous variables,

ηt ∼ N(0, I) is a R dimensional vector of unobserved aggregate shocks with entries
(where we allow for N ≥ R), and εt ∼ N(0,Σagg) collects other shocks affecting
aggregate variables as well as measurement error. The aggregate block features L

lags. µagg, Aagg
l and Bagg are conformable vectors and matrices of parameters to be

estimated. Bagg captures effects of structural shocks on aggregate variables on impact.
We generally denote entries in Bagg by Bagg

nr , where n ∈ {1, ..., N} indexes the variable
and r ∈ {1, ..., R} the aggregate shock unless noted otherwise.
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Block 2: Idiosyncratic

For each idiosyncratic unit i, the idiosyncratic block can be written, in vector form, as

X i
t −Xagg

t = µi +
Lagg∑
l=1

Ai
lX

agg
t−l +

Lreg∑
l=1

Ci
lX

i
t−l +Biηt + εit, i = 1, · · · , I (10)

where X i
t is an K-dimensional vector including the idiosyncratic endogenous variables, and

εit ∼ N(0,Σi) is assumed to be independent across idiosyncratic units and independent
of any shock at the aggregate level, though not necessarily across variables within
idiosyncratic units. Lagg and Lreg denote the number of lags of aggregate and idiosyncratic
variables. µi, Ai

l, Ci
l and Bi are conformable vectors and matrices of parameters. Bi

captures the effects of aggregate shocks net of the effect on aggregate variables which
also has the interpretation of effects obtained after controlling for time fixed effects. We
denote entries in Bi by Bi

kr, where k ∈ {1, ..., K} indexes the variable and r ∈ {1, ..., R}
the aggregate shock.

Xagg
t is subtracted from the left hand side in order to account for the time fixed effect.

While we assume here for simplicity that the variables in Xagg
t are the direct aggregate

counterpart of the local variables in X i
t , we can easily accommodate more aggregate

variables.a Spillovers across regions occur due to aggregate shocks ηt or contemporaneous
and lagged aggregate variables Xagg

t .b

aIn that case we simply need to modify the left-hand side of Equation (10) to be Xi
t − SXagg

t , where
S is a selection matrix that selects those observables that we can measure both at the aggregate and
local levels.

bOur specific structure also allows us to directly add up aggregate effects estimated via Equation (9)
and local effects estimated via Equation (10) to obtain an estimate of total individual effects, somewhat
reminiscent of the results in Wolf (2023).
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3.1 Alternative Representations

Before turning to the details of the estimation, it is useful to give two alternative, equivalent
representations of our model. Those are useful because they connect our work to frameworks
that may be more familiar to the reader.

Representation 1: A Factor Model

We first define the vector of all idiosyncratic variables as

Xt = [X1
t
′
X2

t
′
. . . XN

t

′
]′

Then we can stack all idiosyncratic equations to arrive at the following expression:

Xt = Xagg
t ⊗


1

1
...
1


N×1

+ µX +
Lreg∑
l=1

ÃX
l Xt−l +

Lagg∑
l=1

C̃agg
l Xagg

t−l +BXηt + εXt (11)

where ⊗ denotes the Kronecker product, and ÃX
l is a sparse and block-diagonal matrix,

whereas C̃agg
l and BX are dense matrices. Our model thus has a factor structure at the

idiosyncratic level, with factors being given by current and lagged aggregate variables as
well as aggregate shocks.

The second representation is a restricted VAR, which we discuss next.

Representation 2: A Restricted VAR

We first define the vector of all variables as

Zt = [Xagg
t

′X ′
t]
′

Then we can stack all equations to arrive at the following expression:

Zt = µZ +

max(Lagg ,Lreg ,L)∑
l=1

AZ
l Zt−l +BZηt + εZt︸ ︷︷ ︸

wZ
t

(12)

where wZ
t is the overall forecast error and AZ

l are sparse matrices. This expression is
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derived by plugging the aggregate dynamics from equation (9) into each idiosyncratic
set of equations (10).

As mentioned above, our model imposes parsimony by not allowing for direct spillovers
between regions other than through aggregate shocks and aggregate variables. It turns
out that equilibrium models that have exactly this structure are prominently used in the
literature. A leading example is Jones et al. (2022), where the authors develop and estimate
an equilibrium model explicitly modeling dynamics at the levels of U.S. states.4

3.2 Bayesian Estimation

We estimate the model via Bayesian methods, exploiting the Gibbs sampler. We use priors
so that the conditional posteriors are all known in closed form, exploiting our assumption
of Gaussian shocks and making the estimation reasonably fast. Posterior approximation
algorithms such as the Gibbs sampler are inherently recursive, slowing down estimation.
However, as we will discuss next, the parameters for each region can be drawn in parallel,
making the estimation of this model feasible even in large cross sections.
In the application section, we provide guidance on how to choose reasonable default priors
that can serve as a benchmark for further exploration. This is particularly important for
parameters governing the effects of shocks (Bi and Bagg), as there is no standard prior choice
already present in the literature. In summary, our Gibbs sampler draws from the following
conditional posteriors, building on Matthes and Schwartzman (2023):

• Conditional on the parameters in the aggregate block (µagg, {Aagg
l }Ll=1, Bagg, Σagg) and

the regional block (µi, {Ai
l}L

agg

l=1 , {Ci
l}L

reg

l=1 , Bi, Σi ∀i = 1, ..., N) ηt can be drawn by
exploiting the Kalman filter and related smoothing algorithms for linear and Gaussian
systems, based on Carter and Kohn (1994). To make this step more numerically efficient,
we follow Durbin and Koopman (2012) and collapse the large vector of observables into
a vector with the same dimension as the structural shocks.

• Aggregate variables (µagg, {Aagg
l }Ll=1, Bagg, Σagg) conditional on regional variables and

ηt can be drawn using known conditional distributions (we assume Gaussian priors for
Bagg).

4In terms of our notation, their state level dynamics can be written as:

Aagg(L)Xagg
t = wt (13)

Ai(L)(Xi
t −Xagg

t ) = wi
t (14)

where Aagg(L) and Ai(L) are polynomials in the lag operator and wt and wi
t are one-step forecast errors at

the aggregate and state level, respectively.
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• Regional variables (µi, {Ai
l}L

agg

l=1 , {Ci
l}L

reg

l=1 , Bi, Σi ∀i = 1, ..., N) conditional on aggregate
variables and ηt can be drawn using known conditional distributions (we assume Gaussian
priors for Bi). Importantly, given independent priors across i, we can parallelize the
drawing of these parameters.

4 Leveraging Information from Microeconometric Identi-

fication

We now describe in detail how a researcher can use the information from microeconomic iden-
tification strategies to estimate macroeconomic effects. We adopt a Bayesian approach, which
recognizes the uncertainty around the microeconomic estimates and associated identification
assumptions. Our goal is to establish priors on the impact of shocks as encoded in the matrix
BZ , exploiting the connection between the identification of structural parameters in time
series models and priors on the impact of structural shocks, as highlighted in Baumeister
and Hamilton (2015). The conditions for the identification of shocks are established in the
following proposition, proven in Matthes and Schwartzman (2023):

Proposition 1 (Matthes and Schwartzman (2023)) Consider the state-space represen-
tation implied by the VAR representation of the model (12) augmented with the trivial state
equation that the unobserved shocks are the states.5 The least squares projection of ηkt based
on current and past observables (obtained using the Kalman filter) depends only on the kth

column of BZ (BZ
k ), and the covariance matrix of Zt−Et−1Zt, regardless of initial conditions

for the state.

The proposition gives a set of identification conditions for any given shock ηkt . That
is, identification requires knowledge of the elements of BZ , which encode the effects of ηkt
on different variables. This information can come from (imperfect)knowledge of the effects
that these shocks have on idiosyncratic, micro-level variables (after controlling for time-fixed
effects, as is common in the literature), or effects of the same shocks on macroeconomic
variables. However, it does not require knowledge of the specific effects of other shocks.

5To give more detail, the observation equation would be

Zt − µZ −
max(Lagg,Lreg,L)∑

l=1

AZ
l Zt−l = wZ

t

and the state equation
wZ

t = [BZI][η′t ε
Z
t

′
]′
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The proposition allows different approaches to determine the values in BZ
k . In Matthes and

Schwartzman (2023) we propose using a priori measures of exposure to shocks such as output
shares. Alternatively, Sarto (2024) imposes exclusion restrictions on the direct impact of
particular shocks on certain variables (hence, shocks to variable 1 only affect variable 2

indirectly through its effect on variable 1 etc) that discipline the values of BZ .6

Our current approach is to obtain identification from the assumptions and results of mi-
croeconometric studies, possibly in addition to more traditional macroeconomic identification
assumptions, thus providing a bridge from those studies to macroeconomic effects. Typically,
researchers study the impact of one idiosyncratic variable (which we denote X i

1,t) on another
(denoted by X i

2,t). They estimate models of the form

X i
2,t −Xagg

2,t = γ(X i
1,t −Xagg

1,t ) +W ′
tξ + ui

t, (15)

where Wt is a vector of controls and ξ of parameters, and ut is a residual. This is a more
general version of equation (5) in the example, including controls and with the variables
denoted by indices.

Equation (15) cannot usually be estimated by OLS. A major concern is that both X i
1,t

and X i
2,t are caused by a similar set of local variables (including reverse causality from X i

2,t to
X i

1,t). A common solution for that is to construct an instrument for X i
1,t based on multiplying

Xagg
1,t by a local coefficient βi, where βi is chosen as a reasonable measure of the marginal effect

of changes in Xagg
1,t on X i

1,t net of a time-fixed effect. Such a measure implies by construction
that the instrument is relevant.
The exclusion restriction is

1

TI

∑
i,t

βiX
agg
1,t u

i
t =

1

T

∑
t

[
Xagg

1,t ×

(
1

I

∑
i

βiu
i
t

)]
= covT

(
Xagg

1,t , covI(βi, u
i
t)
)
= 0

where the last equality follows from 1
T

∑
t u

i
t = 0 and 1

I

∑
i u

i
t = 0.7 covI denotes a cross-

sectional sample covariance, while covT denotes a sample covariance computed across time
periods. An implication is that, when Xagg

2,t is high, shocks cannot be systematically higher
or lower in units where βi is higher. At the core of papers in that literature is, therefore, an
argument for why the cross-sectional covariance is zero or at least uncorrelated with Xagg

1,t .

6Sarto (2024) also does not use a Kalman filter for estimation, so the discussion of identification is
somewhat different in that case.

7In particular, 1/I
∑

i βiui =
1
I

∑
i βi× 1

I

∑
i uit+covI(βi, u

i
t) = covI(βi, u

i
t), and 1

T

∑
t X

agg
1,t covI(βi, u

i
t) =

1
T

∑
t X

agg
1,t × 1

T

∑
t covI(βi, u

i
t)+covT (X

agg
1,t , covI(βi, u

i
t)) = covT (X

agg
1,t , covI(βi, u

i
t)). The last equality follows

from the fact that 1
T

∑
t covI(βi, u

i
t) =

1
T

∑
t,i(βi − 1

I βi)(u
i
t − 1

I u
i
t) =

∑
i(βi − 1

I βi)(
1
T

∑
t u

i
t − 1

I
1
T

∑
t u

i
t) = 0.

Standard regularity conditions ensure that these conditions hold, at least approximately, in moderate and
large samples.
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For example, because the instrument only varies over time with the aggregate variable, it
will be orthogonal to local shocks.8 For aggregate shocks, the exclusion requires that, after
accounting for controls, the effects of other aggregate shocks are uncorrelated with βi, a point
emphasized by Canova (2022).

Under the identification assumptions, this methodology consistently estimates γ. This
estimate can be used to set priors on the effects of a shock η1t that only affects X i

2,t through
its effect on X i

1,t. In particular, such a shock has the property that it affects X i
2,t by a factor

γ. Moreover, estimation of γ involved a stance that the shock affects X i
1,t by a factor βi of its

effect on Xagg
1,t . Bringing those together, we have that the prior means for Bi

1,1 and Bi
2,1 are

E[Bi
1,1] = biE[Bagg

1,1 ]

E[Bi
2,1] = γE[Bi

1,1]

That is, the shock to η1 affects X i
1,t through its effect on the aggregate variable, and X i

2,t

through its effect on X i
1,t. We conclude the discussion of prior means for the idiosyncratic

block with two remarks:
First, and consistent with the class of microeconomic studies that we use, the priors imply

a homogeneous impact of X i
1,t on X i

2,t. In the present context, this assumption is less stringent
than it appears. An advantage of the Bayesian approach is that the homogeneous effect is
imposed only on the prior means, but is not imposed dogmatically. The final estimation will,
in general, yield heterogeneous effects that we can calculate and describe.

Second, the procedure allows for the use of estimates obtained outside the specific
econometric framework and data that we use to estimate the aggregate effects. In particular,
the model can be specified without all the controls needed to render the exclusion restriction
valid or using estimates obtained from a local projection rather than a VAR. All that is
needed is that γ is appropriately estimated.

4.1 Prior on Aggregate Effect

It remains to set the effect of η1 on Bagg
1,1 . We start from the observation that η1 can be

normalized so that its standard deviation is equal to one. Bagg determines the variance (and
covariance) between the different aggregate variables. We, therefore, choose to set prior
means on Bagg that are consistent with those covariances. To do that, we estimate a version
of our aggregate block via ordinary least squares (OLS). We then choose the prior of Bagg

1

8An underlying assumption is that, unlike in Gabaix and Koijen (2023), local shocks do not have an effect
on aggregates.
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based on the variance of the OLS residuals. The variance of the one-step ahead forecast error
Σ̃agg captures the fluctuation in Baggηt and ut. To set the prior on Bagg

1,1 , we suppose that a
fraction θ of the variance of Xagg

1,t is explained by the government spending shock we identify.
Given that ηt has a unit variance, our prior mean for Bagg

g,1 is

E
[
Bagg

1,1

]
= (θΣ̃agg

1,1 )
1/2 (16)

The value of θ is chosen to maximize the marginal likelihood, but could alternatively be
chosen directly as a prior hyperparameter.

As an alternative, note that Bagg
1,1 relates an aggregate shock to an aggregate outcome

(often a policy variable, as in our example). As such, previous studies using aggregate data
or calibrated equilibrium models can be used to inform the prior on Bagg

g,1 .9

4.2 Incorporating Standard Macroeconomic Identification Schemes

As mentioned above, our model can easily incorporate more standard macroeconomic identi-
fication schemes since it has a (restricted) VAR representation. In particular, information on
the sign and magnitudes of the impact effects of shocks on aggregates can be incorporated
via priors on BZ , similar to Baumeister and Hamilton (2015).10 Zero restrictions can be
incorporated (or at least approximated) via tight priors on specific elements of BZ . This
insight also provides an avenue for incorporating instruments for the macroeconomic shock
itself (Mertens and Ravn, 2013; Plagborg-Møller and Wolf, 2021) by including the instrument
as an aggregate variable and using zero restrictions as described in Plagborg-Møller and Wolf
(2021).

5 Application: Revisiting Nakamura and Steinsson (2014)

Nakamura and Steinsson (2014) lever regional variation in defense spending to estimate local
(or “open economy relative”) government spending multipliers, which they use to inform
dynamic equilibrium models. We use their data not only directly estimate to aggregate
multiplier, but also infer total multipliers for each US state, which our model allows to be
heterogeneous.

9Since we use the previous derivations to set non-degenerate priors on the impact matrices, our approach
will technically only set-identify objects of interest. However, with a large cross-section of variables for
which we use these priors, the amount of additional uncertainty due to having set identification is small
(Amir-Ahmadi and Drautzburg, 2021; Matthes and Schwartzman, 2023).

10Approximate sign restrictions at longer horizons can be incorporated by specific choices on the lag
coefficients in the model, as discussed in Baumeister and Hamilton (2015).
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5.1 Data

We consider a bivariate system for both aggregate and regional blocks: Xagg
t = (yaggt , gaggt )′

and X i
t = (yit, g

i
t)

′ where y and g represent output and military spending, respectively. As in
Nakamura and Steinsson (2014), these two variables are defined as the two-year difference of
the corresponding raw variable normalized by output.

yaggt =
Y agg
t − Y agg

t−2

Y agg
t−2

, gaggt =
Gagg

t −Gagg
t−2

Y agg
t−2

, yit =
Y i
t − Y i

t−2

Y i
t−2

, git =
Gi

t −Gi
t−2

Y i
t−2

All of the data is taken directly from Nakamura and Steinsson (2014). In particular, we use
their choice of two-year differences. We thus end up with annual data spanning from 1967 to
2006 for 51 states. Capital letters denote real (deflated by national CPI), per capita variables.

5.2 Identification via Priors

In this section, we describe our priors, with a particular focus on those priors that are directly
relevant for identifying the fiscal multiplier and that encode our identification assumptions.
For standard, VAR-type parameters, we use Minnesota priors Doan et al. (1984), as is
common in the literature. The priors except for the relevant entries of BZ are common across
the two applications we present in this paper.
The government spending shock will be identified as the first element of ηt. Hence, the response
of the aggregate variables to this shock is represented by the first column of Bagg, which
we call Bagg

1 = (Bagg
y,1 , B

agg
g,1 )

′ and the response of idiosyncratic variables is Bi
1 = (Bi

y,1, B
i
g,1),

where for legibility we index row elements of each B matrix by the variable letter rather than
its position in the VAR.

Table 1 summarizes the prior distributions of the parameters involved in the aggregate
and regional blocks, respectively.
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Type of Distribution Parameters
Aggregate Block

µagg, Aagg Normal Minnesota Prior
Bagg (Elements related to shock of interest) Normal See main text

Bagg (other) Normal Mean: 0.0, Std: 10

Σagg Inverse Wishart
Scale: OLS

dof: 10
Regional Block

µi, Ci Normal Minnesota Prior
Ai Normal Mean: 0.0, Std: 0.5

Bi (Identified) Normal
Regional information

(See main text)
Bi (Unidentified) Normal Mean: 0.0, Std: 10

Σi Inverse Wishart
Scale: OLS

dof: 10

Table 1: Prior Specifications for Aggregate and Regional Blocks

5.2.1 Priors on Bi

The key step in our identification methodology is to use prior information obtained from
econometric studies using fixed-effects to impose priors on Bi

y,1 and Bi
g,1. To establish priors

on the sensitivity of regional spending to the aggregate spending shock Bi
g,1, we adopt the two

methods used by Nakamura and Steinsson to construct their instrument. First, we estimate
the first-stage regression in Nakamura and Steinsson (2014),

git = βigaggt + αi + γt + εit, i = 1, · · · , N

The estimated coefficient βi is used to inform the prior mean of Bi
g,1 after being rescaled

by the effect of the government spending shock on aggregate government spending.11 This
regression does not include the same controls as our time series model, which also controls for
lags of the relevant variables. Below we discuss that our findings are robust to an alternative
specification where this regression does include the same control variables. For the second
specification, we use the average ratio between state spending and state output for the first

11We rescale by multiplying the coefficients from Nakamura and Steinsson (2014) by the prior mean
E
[
Bagg

g,1

]
described in Section 4 above. An alternative would be to use a hierarchical prior.
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five years of the sample, a shift-share setup.12 In both cases, the prior standard deviation
for Bi

g,1 is set to half the absolute value of the prior mean. We set the prior mean of Bi
y,1

to the prior mean of Bi
g,1 multiplied by the corresponding estimate of the local multiplier

in Nakamura and Steinsson (2014).13 We again choose the prior standard deviation of Bi
y,1

to equal half the absolute value of its prior mean. As with local government spending, the
intention here is that we use a prior that is informative enough to inform the local multiplier,
but we do not want to make it dogmatic. The prior means for Bi

g,1 and Bi
y,1 average to zero

for both specifications, consistent with our regional block specification in which we subtract
Xagg

t from X i
t .14

5.2.2 Priors on Bagg

To set the prior on Bagg
g,1 we follow the procedure delineated in Section 4.1 and choose the

prior mean for Bagg
g,1 so that η1 accounts for a fraction θ of the variance of innovations to G, as

estimated via OLS. We then choose θ to maximize the marginal likelihood of the estimated
model.

The other prior parameters in Bagg
1 , the prior mean of Bagg

y,1 and the standard deviation
of both Bagg

y,1 and Bagg
g,1 are implied by our prior for the government spending multiplier. To

pin down these parameters, we draw magg = Bagg
y,1 /B

agg
g,1 one million times from the prior

distribution for different values of prior hyperparameters until we hit our target moments
for the fiscal multiplier – we target a median for the prior of the spending multiplier of
0.8 with a 90% interval of 0.5-1.5. This range is motivated by our reading of the existing
literature – three representative examples are: Ramey (2019): “The bulk of the estimates
across the leading methods of estimation and samples lie in a surprisingly narrow range of
0.6 to 1.”, Nakamura and Steinsson (2018): “Estimates between 0.5 and 1.0–which is where
most of the more credible estimates based on US data lie–.... ”, and Barnichon et al. (2021):
“Unfortunately, despite intense scrutiny the range of estimates for the government spending
multiplier remains wide–between 0.5 and 2–...”. The priors for the effects of other aggregate
shocks on both aggregate and regional variables are Gaussian with a mean of 0 and a large
standard deviation of 10. Details on priors for other parameters that are not directly relevant
for identification of the structural shocks can be found in Appendix A.15

12The shift-share structure is treated as a robustness check in Nakamura and Steinsson (2014). However,
as pointed out in Ramey (2020), the shift-share specification gives a larger first-stage F statistic, so we find it
useful to study both specifications here.

13The values for these multipliers are specification-specific and given in Appendix D.
14In the shift-share specification, we demean the coefficients obtained from Nakamura and Steinsson (2014).
15We generate 100,000 draws from our posterior, of which we discard the first 50,000.
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5.3 The Aggregate Government Spending Multiplier

We use a lag length of 2 for both the aggregate and state-level blocks and include R = 3

aggregate shocks in our estimation.16 To have a transparent discussion of the aggregate
government spending multiplier we first give an explicit definition: In our specification, the
impact multiplier equals Bagg

y,1 /B
agg
g,1 , the response of yaggt to the identified spending shock

divided by the response of gaggt to the same shock. Before turning to our benchmark results,
a useful question to answer is “How much could we learn from our aggregate data and
standard time series methods alone?”. If we want to use aggregate data alone, there are many
macro-based identification schemes that we could use. For simplicity, and because it fits
well with our benchmark specification in a way we describe below, we first estimate a VAR
on our aggregate data using the same Minnesota prior that we use in our full model, order
government spending first and use a simple Cholesky-type recursive identification scheme that
identifies the government spending shock as the forecast error of government spending. Since
we use defense spending, this is an assumption that is both reasonable and transparent.17

The resulting 90 percent posterior interval centered at the median is (−0.33, 5.71), with a
median of 2.70. It is safe to say that with our annual dataset we cannot learn anything
useful from aggregate data alone.18 Table 2 instead summarizes the results for the case
with the prior based on the first-stage regression in Nakamura and Steinsson (2014) and
our full model. We show the prior and three posteriors, one where we do not use any local
information (second column)19, one where we only use information on the local response
of government spending (third column), and one where we additionally use information on
the local multiplier from Nakamura and Steinsson (2014) to inform the local response of
output to a government spending shock (last column, our benchmark specification). With our
benchmark specification, the marginal likelihood is maximized at θ = 1, which means that all
variation in the forecast error of government spending comes from the government spending
shock, in line with the recursive identification scheme we used for the aggregate-only VAR. We
can see that using identification information at the micro-level does shift multiplier (posterior
median) estimates by over 10 percent when compared to our prior or the model without

16We provide guidance on how to pick the number of aggregate shocks in Section 6.
17Although, as stressed by Nakamura and Steinsson (2018), the assumption excludes the possibility of

geopolitical shocks affecting both military spending and output directly
18We intentionally want an apples-to-apples comparison here. If a researcher only used aggregate data, it is

safe to say that they would use data at a higher frequency, which we cannot do because we also want to use
state-level data.
The exact identification scheme for aggregate-only VAR turns out to be less important - we find even wider
posterior bands if we, for example, use a time-aggregated version of the military news series of Ramey and
Zubairy (2018).

19When we don’t use an informative prior, we set the prior standard deviation of the corresponding elements
to 10.
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information on local effects. This confirms that local information can play an important
role in the identification of macroeconomic effects. However, using micro-level information
on local effects of defense spending does not move the multiplier substantially above 1 (the
probability that the aggregate multiplier is larger than 1 increases to 37 percent from our prior
of 28 percent). Not incorporating information on the local effects of government spending on
output leads to a somewhat smaller increase in the probability of 5 percent.

Prior Posterior Posterior Posterior

magg

0.80 0.80 0.85 0.91
(0.38, 1.55) (0.37, 1.53) (0.40, 1.65) (0.46, 1.41)
[0.53, 1.18] [0.52, 1.17] [0.56, 1.25] [0.63, 1.20]

Prob(magg > 1) 0.28 0.28 0.34 0.37
Log MDD -7337.99 -7227.25 -7283.38

θ 1.00 0.25 1.00
Informative Bi

y prior No No Yes
Informative Bi

g prior No Yes Yes

Table 2: Results based on Nakamura and Steinsson (2014) first-stage regression. 90% posterior
bands are in parentheses, and 68% bands are in square brackets. Results with Informative
prior for Bi

y represent our benchmark results.

These qualitative results are robust to using the shift-share results instead to inform our
prior, as shown in Table 3. Both point estimates of the aggregate multiplier and the estimated
probability of the multiplier being greater than 1 are now larger, with an 18 percent increase
in the probability relative to the prior or the case with uninformative local priors (as seen
in Table 2)20 This finding confirms that cross-sectional information helps to move the prior,
but does not provide conclusive evidence that the aggregate multiplier is larger than 1 (or
smaller than 1, for that matter).

20Our multiplier estimate implicitly averages over different monetary policy regimes that could have been in
place during the sample, so they are not inconsistent with the takeaways in Nakamura and Steinsson (2014).
Similarly, we use a linear model. If nonlinear effects are important for government spending multipliers, as
argued by Barnichon et al. (2021), then again we estimate an average multiplier.
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Posterior Posterior

magg

0.90 0.97
(0.41, 1.71) (0.49, 1.52)
[0.59, 1.32] [0.68, 1.29]

Prob(magg > 1) 0.39 0.46
Log MDD -7208.78 -7292.27

θ 1.00 1.00
Informative Bi

y No Yes
Informative Bi

g Yes Yes

Table 3: Results based on Nakamura and Steinsson (2014) shift-share setting. 90% posterior
bands are in parentheses, and 68% bands are in square brackets.

5.3.1 Discussion

We now highlight various alternative specifications we have explored to get a sense of how
robust our results are. In particular, we are interested in robustness in two dimensions: (i)
data sources/transformations, and (ii) prior specifications. Tables with the detailed results
for each specification can be found in Appendix B. First, results are robust to using one
year differences instead of two-year differences when computing the observables. Results are
also broadly unchanged when directly computing aggregate observables as output-weighted
averages of the regional variables. In terms of priors, one concern readers might have is
that the Nakamura and Steinsson (2014) first-stage regression does not use the same control
variables that we include in our model. To confront this possible issue, we estimate a new
version of their first stage regression that does include the same variables on the right-hand
side as our regional VAR block. We again find no substantial evidence of an aggregate
multiplier larger than 1.
Next, we address the role that the aggregate prior plays. Loosening the aggregate prior leads
to point estimates (posterior median) of the aggregate multiplier that are larger, but posterior
uncertainty dramatically increases, making any meaningful statement about the aggregate
multiplier impossible. For example, with a prior for aggregate multiplier centered at 0 and
the 90 percent prior probability interval centered at the median going from -6 to 6, we get a
posterior median of 2.19, but a 90 percent posterior band centered at the median going from
-1.49 to 5.72. Why does the aggregate prior matter so much then? Is it because the regional
identification information is not useful? No, the estimated government spending shock is
basically the same in our benchmark and this specification (the correlation is basically 1,
as shown in Appendix C), but the effect our estimated shock has on aggregate output is
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not tightly pinned down by data alone, so the aggregate prior plays an important role, in
particular because the time series dimension is rather small in our sample. We thus find that
in order to pin down aggregate effects of government spending, aggregate information is not
only useful, but even crucial.
Next we graphically assess the role of two features of our benchmark prior. First, we have
thus far picked θ to maximize the marginal likelihood. How much does this matter? Figure 1
gives an answer.

Figure 1: Changing θ. Left panel plots the aggregate multiplier (median and 90 percent
posterior bands), right panel plots the marginal data density estimated via method in Geweke
(1999). Dashed red vertical line shows the benchmark θ value.

Although the fit of the model increases substantially with θ = 1, the qualitative conclusions
about the multiplier remain unchanged.
Second, we check how important local prior information is by changing the associated standard
deviation. In our benchmark, we set the standard deviations for all local effects of government
spending to half the absolute value of the corresponding mean. Figure 2 shows what happens
when we use other values than 0.5. Again, our findings of multipliers that are smaller than
unity remain.
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Figure 2: Changing standard deviation of prior on local effects. Left panel plots the aggregate
multiplier (median and 90 percent posterior bands), right panel plots the marginal data
density estimated via method in Geweke (1999). Dashed red vertical line shows the benchmark
θ value.

5.4 The Local Government Spending Multiplier

Finally, we want to highlight the heterogeneity in the effects of government spending shocks in
the United States. The open economy relative multiplier in Nakamura and Steinsson measures
“the effect that an increase in government spending in one region of the union relative to
another has on relative output”, which can be characterized as d(yit − ȳt)/d(g

i
t − ḡt). In our

approach, the impact open economy multiplier is thus equal to the ratio of the corresponding
elements of Bi.21 Moreover, we can infer the total multiplier for each state i as

Bi
y,1 +By,1

Bi
g,1 +Bg,1

Nakamura and Steinsson (2014) estimate a homogeneous local multiplier by construction,
while both our local multiplier and the total multiplier, which we will focus on here, are
allowed to be heterogeneous. Figure 3 shows the estimated total multipliers as defined before
for each state, along with 68 percent posterior bands. We find substantial heterogeneity, with
a number of states not having any meaningful effects, whereas a substantial number of states
have multipliers around or above 1.22

21Remember that we define multipliers as ratios of impulse responses.
22The corresponding figure with 90 percent posterior bands can be found in Appendix E. Our conclusions

are robust to using these 90 percent posterior bands instead.
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Figure 3: Median of Regional Total Effects with 68% Posterior Interval

6 Monte Carlo

To assess the performance of our algorithm across different sample sizes N and T , we conduct
Monte Carlo simulation exercises using the posterior median from the baseline estimation
(reported in Table 2) as the data generating process (DGP)23. The prior of Bagg

g,1 and Bagg
y,1 are

largely uninformative - they are centered at the truth for convenience but the prior standard
deviations are set to be large (a value of 10). The prior mean of Bi

g,1 is equal to the truth,
and its standard deviation is half of the absolute value of mean. The corresponding mean for
the local impact on output is set to our benchmark estimate of the local multiplier (1.43)
times the mean of Bi

g,1, as in our empirical application.24 The assumption that the regional
prior is centered on the truth reflects our view that our identification assumptions are valid,
but there is substantial uncertainty. Since our aggregate prior here is uninformative, all
identification comes from the regional information. We choose the prior distributions of the
rest of the parameters to be the same as in the empirical application.

23When the number of regions N is different from the one in the empirical exercise (51), we randomly
generate the states using the following procedure: Let n = ⌊N/51⌋. For the 1st to 51n-th states, we repeat
the 51 states in the empirical benchmark for n times. For the (51n+ 1)-th to N -th states, we randomly draw
the states from the empirical benchmark without duplication. For example, when N = 138, two sets of the
US states are included in the 1st to 102nd states, and the remaining 34 states are drawn randomly from the
observed 51 states. The selection of the states is fixed across simulations with the same choice of (T,N).

24The standard deviation of the local output effect is set to the absolute value of the mean.

24



Figure 4: Sensitivity to the number of time series observations T (N = 51)

Figure 5: Sensitivity to the number of cross-sectional units N (T = 39).

Figures 4 and 5 explore the sensitivity to the sample length and the size of the cross-section
respectively. The solid blue line represents the median of the posterior medians from 48
simulations along with the 90% interval constructed from those 48 medians. The dashed line
represents the true value of the parameters, which is equal to the prior mean. The top right
panel reports the correlation between the true and identified (posterior median) aggregate
shocks. Overall, we can see that adding longer time series helps, whereas increasing the
cross-section has no effect, meaning that 51 states already provide all the cross-sectional
variation that can be exploited in this application. This also mirrors our discussion in Section
5, where the limited time-series dimension of our sample limits what one can learn about
the aggregate multiplier in the absence of an informative aggregate prior. Relative to our
benchmark findings in the Nakamura and Steinsson (2014) application, the uninformative
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nature of the aggregate prior in this Monte Carlo results in substantial uncertainty/dispersion
of estimates across Monte Carlo samples, as can be seen in the uncertainty bands constructed
from the medians across our 48 samples.

Figure 6: Sensitivity to R (Rtrue = 3)

To investigate the sensitivity to the assumption on the number of aggregate shocks R, we
generate the sample with Rtrue = 3 and estimate the model with different assumptions on
R. Figure 6 plots the outcome of this exercise. We can see that once the correct number of
shocks is included, increasing the number of shocks further has no effect. This result can be
used as a guide for empirical applications: Researchers should choose to increase R until the
results do not change anymore when R is increased further.
To see how well our procedure recovers the aggregate shock of interest, we pick one particular
simulation and compare the posterior distribution of the identified aggregate shock with the
truth. With the same sample size as the empirical application (Figure 7), the extracted shock
series keeps track of the truth very well. The true shock series is mostly within the posterior
bands even though the bands are tight.
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Figure 7: One simulated shock series along with the estimated shock and 90 percent posterior
bands for that sample. (T,N) = (39, 51). Legend gives percentiles of the distribution of
correlation between the true shock and estimated shock.

7 Conclusion

We have presented an econometric framework that can jointly leverage identification strategies
from the applied micro toolkit, and identification assumptions from the macro/time series
literature and as such exploits both time series and cross-sectional variation to identify
aggregate macroeconomic effects as well as total idiosyncratic effects of identified shocks.
This stands in contrast with results obtained using standard applied micro tools that estimate
time-fixed effects and as such take out the macroeconomic effects we are interested in.
Using a well known application on government spending multipliers, we highlight how
aggregate identification information is still needed to obtain sharp estimates of many objects
of interest, whereas others (such as the shock itself) can be obtained without informative
priors on aggregate effects of this shock.
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Appendix For "Estimating The Missing Intercept"

A More Information on Priors

The parameters other than Bagg and Bi are set following standard practice in the VAR
literature. The scale of the inverse Wishart distributions for the covariance matrix of residuals
is chosen on the basis of the OLS estimation of a VAR with the same variables. To be more
precise, we estimate (9) and (10) without acknowledging the factor structure in the forecast
errors and set the estimated Σ̃agg and Σ̃i (i = 1, · · · , N) as a prior mean for the covariance
matrix of the residuals. We use a small number of degrees of freedom (10) so that this prior
is not very informative.
Our prior for the aggregate response of government spending to a government spending
shock is parameterized via θ (which we choose to maximize the marginal likelihood in the
government spending application using the Geweke (1999) approach) as follows:

E
[
Bagg

g,1

]
= (θΣ̃agg

2,2 )
1/2 (A-1)

where we assume that the aggregate government spending variable is ordered second in the
VAR estimated via OLS.

A.1 More on Minnesota Prior

Prior Mean. The prior mean is 0 for all coefficients other than the ones associated with
own first lags, which are 1.

Prior Variance. The prior variance in the Minnesota prior is a diagonal matrix, where
the variance of the coefficient in the i-th equation associated with the l-th order lag of j-th
variable is given by

(
ϕ0

h(l)

)2
i = j(

ϕ0
ϕ1

h(l)

σj

σi

)2
i ̸= j

(ϕ0ϕ2)
2 for constants and exogenous variables

where σi and σj are the square roots of the (i, i) and (j, j) elements in the error variance
matrix. We obtain the estimate of the error variance matrix by applying OLS to (9) and
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(10) without factors. The prior hyperparameters are set as ϕ0 = 0.2, ϕ1 = 0.5, ϕ2 = 105, and
h(l) = l.

B More Results for Government Spending Application

B.1 1-Year Differenced Data

Prior Posterior (First-Stage) Posterior (Shift-Share)

magg

0.80 0.74 0.86
(0.38, 1.55) (0.38, 1.15) (0.43, 1.34)
[0.53, 1.18] [0.52, 0.98] [0.60, 1.14]

Prob(magg > 1) 0.28 0.14 0.30
Log MDD -6991.57 -7020.17

θ 0.50 0.65
Prior Type First-Stage Shift-Share

Table A-1: Observables based on one-year differences. 90% posterior bands are in parentheses,
and 68% bands are in square brackets.

B.2 Output-Weighted Aggregate Data

Prior Posterior (First-Stage) Posterior (Shift-Share)

magg

0.80 0.90 0.96
(0.38, 1.55) (0.46, 1.39) (0.49, 1.49)
[0.53, 1.18] [0.63, 1.18] [0.67, 1.27]

Prob(magg > 1) 0.28 0.36 0.44
Log MDD -7273.47 -7289.41

θ 1.00 1.00
Prior Type First-Stage Shift-Share

Informative Bi
y Yes Yes

Table A-2: Aggregate observables are output-weighted averages of regional data. 90%
posterior bands are in parentheses, and 68% bands are in square brackets.
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B.3 Alternative First-Stage Regression

Prior Posterior Posterior

magg

0.80 0.87 0.96
(0.38, 1.55) (0.41, 1.68) (0.49, 1.49)
[0.53, 1.18] [0.57, 1.28] [0.67, 1.27]

Prob(magg > 1) 0.28 0.36 0.44
Log MDD -7227.72 -7288.26

θ 0.30 1.00
Informative Bi

y No Yes

Table A-3: First-stage regression now includes same controls as our baseline model. 90%
posterior bands are in parentheses, and 68% bands are in square brackets.

B.4 Looser Aggregate Prior

Prior Posterior Posterior

magg

0.77 0.95 0.97
(-0.11, 3.34) (-0.09, 3.95) (0.11, 1.90)
[0.26, 1.68] [0.34, 2.04] [0.45, 1.52]

Prob(magg > 1) 0.37 0.47 0.48
Log MDD -7226.98 -7284.03

θ 0.25 1.00
Informative Bi

y No Yes

Table A-4: 90% posterior bands are in parentheses, and 68% bands are in square brackets.
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B.5 Even Looser Aggregate Prior

Prior Posterior Posterior

magg

-0.00 28.64 2.19
(-6.31, 6.32) (-138.93, 199.42) (-1.49, 5.73)
[-1.82, 1.82] [4.94, 74.11] [0.03, 4.31]

Prob(magg > 1) 0.25 0.85 0.71
Log MDD -7229.34 -7292.88

θ 0.30 1.00
Informative Bi

y No Yes

Table A-5: 90% posterior bands are in parentheses, and 68% bands are in square brackets.

C Correlation Between Estimated Government Spending

Shocks

We compute the correlation of the posterior medians of identified spending shocks from three
specifications shown in right columns of Tables 2, A-4, and A-5.

Baseline Looser Even Looser
Baseline 1 1.0000 0.9998
Looser 1.0000 1 0.9998

Even Looser 0.9998 0.9998 1

Table A-6: Correlation between estimated posterior median shock series.

D Local Multiplier Estimates Used to Set Priors

First Stage Shift share
Two-year 1.43 2.48
One-year 0.69 —

Alternative First-Stage Regression 0.63 —

4



E Total Regional Multiplier With 90 Percent Bands

Figure A-1: Median of Local Total Effects with 90% Posterior Interval
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