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Abstract

This paper develops a methodology to identify aggregate shocks by employing het-

erogeneous direct (partial equilibrium) effects estimated from microeconometric re-

search designs. The total effect of a shock consists of direct and indirect (general

equilibrium) effects, but microeconometric tools typically do not capture the latter.

Our framework builds on a time-series econometric model that incorporates both ag-

gregate variables and functional observations, such as cross-sectional densities. We

show how direct effects can serve as identification restrictions to evaluate the total ef-

fect. We illustrate our approach by comparing the effects of lump-sum and targeted

stimulus transfer policies on aggregate outcomes and consumption inequality.
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1 Introduction

Among empirical macroeconomists, it has become quite common to employ micro data com-

bined with microeconometric identification strategies in order to draw macroeconomic impli-

cations. This popularity is partly owing to difficulty in extracting exogenous variation from

aggregate data alone: Researchers have to find reasonable natural experiments, or impose

identification restrictions that are often hard to justify. Micro datasets allow them to exploit

cross-sectional variation to learn first-round propagation of macroeconomic shocks to cross-

sectional units. Such propagation is often heterogeneous; agents are exposed to and respond

to shocks differently depending on their own characteristics.

However, the parameters estimated from the microeconometric regressions are not directly

informative on aggregate consequence of shocks. The total effect of a macro shock consists

of direct (partial equilibrium) and indirect (general equilibrium) effects, where the former

captures first-round responses of agents to shocks and the latter reflects feedback from changes

in aggregate quantities, such as prices, to agents’ decisions. Microeconometric identification

strategies are typically meant to capture only direct effects, and indirect effects are omitted by

including time-fixed effects. As a conventional way to recover the indirect effect, researchers

construct fully-specified general equilibrium models calibrated to match estimates from the

regressions. The conclusions drawn from such exercises depend heavily on the specification

of the general equilibrium models.

This paper develops a novel approach for investigating total effects of aggregate shocks

by exploiting information on direct effects. The key ingredients for our method are (i)

heterogeneity in direct effects identified through microeconometric research designs and (ii)

observations of cross-sectional densities of micro variables over time. We combine these

elements to identify aggregate shocks in a mixed autoregression (MAR), an autoregressive

model featuring both aggregate and functional observations. The functional data not only

works as one of the primary inputs for identification, but also enables the analysis of the

effects of identified shocks on inequality.

We motivate our method by a stylized representation of dynamic heterogeneous-agent

problems, accommodating those in most heterogeneous-agent macro models. We consider an

aggregate shock perturbing agents’ decisions, such as a transfer stimulus payment. We show

that the impact of the shock on the current cross-sectional density is defined as a sum of direct

and indirect effects. The direct effect reflects the first-round response of agents to the shock,

and the indirect effect captures the feedback from aggregate quantities. The indirect effect

reflects propagation from current aggregates, and importantly, also from future aggregates
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due to agents’ forward looking behavior. The individual-level regression with coefficients

depending on individual characteristics captures the heterogeneous direct responses to the

shock. This information allows us to construct the direct effect on the cross-sectional density,

which is a primary source for our identification strategy. On the other hand, the indirect

effect is taken up by the time-fixed effect.

Our discussion turns to the autoregressive model with both aggregates and the cross-

sectional density as endogenous variables. The prototypical autoregression does not include

future aggregates because the autoregressive structure itself captures the dynamic propaga-

tion. However, the omission of future aggregates has important consequences in our applica-

tion: Since the indirect effect depends also on future aggregates, direct and indirect effects

are compounded in the autoregressive framework. We cannot disentangle the compound ef-

fect by the information from the individual-level regression alone because it is silent on the

indirect effect. We solve this problem by imposing a structure on how the indirect effect di-

minishes over time, and compute an approximated indirect effect based on this structure. We

expect that current aggregates matter more than future aggregates for the current density,

and we specify how such diminishing occurs. We show, in a quantitative heterogeneous agent

New Keynesian (HANK) model featuring several frictions, that even a simple exponential

diminishing structure provides a reasonable approximation.

We incorporate our identification scheme into a MAR model consisting of aggregate and

functional observations. In particular, we achieve identification by placing prior restrictions

on structural parameters rather than fixing them at particular values (Baumeister and Hamil-

ton, 2015). Our identification strategy is imperfect because (i) there is uncertainty due to

estimation of direct effects, and (ii) we recover indirect effects based on a certain assumption

about how they diminish. We acknowledge possible errors in the identification conditions

stemming from these two forces, and reflect them in terms of prior uncertainty. As another

advantage of this methodology, we can incorporate additional prior beliefs on how the shock

propagates, such as sign restrictions (e.g., a certain aggregate variable increases/ decreases

in response to the shock).

Another challenge in taking our methodology to the data is to handle cross-sectional densi-

ties. Such functional observations are inherently infinite-dimensional, requiring a dimension-

reduction method for estimation. We leverage recent development of functional data analysis,

and approximate functional time-series with a finite number of orthonormal basis functions.

This approach allows us to represent an approximated MAR as a vector autoregression (VAR)

with aggregate variables and coefficients associated with the basis functions so that existing
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estimation methods (such as OLS, maximum likelihood, and Bayesian estimation) are ap-

plicable. The choice of basis functions is crucial for the performance of the approximation

scheme. We follow the recommendation by Y. Chang et al. (2024b) and choose the basis

functions in a data-driven way, namely the functional principal component (FPC) basis.

The FPC basis is known to explain temporal variation in functional variables better than

any other orthonormal basis. This optimal property implies that the FPC summarizes in-

formation in functional variables effectively, helping avoid the system getting unnecessarily

large.

We evaluate our identification methodology using the medium-scale HANK model with

liquid and illiquid assets. The direct effect of the lump-sum transfer shock on the consump-

tion density implied by the model is qualitatively consistent with the empirical counterpart,

and thus the model serves as a useful laboratory to check the validity of our methodology

before taking it to the data. The model brings the following insights. First, the influ-

ence of aggregate variables k periods into the future on the consumption density decays

exponentially and monotonically as k grows, across the entire domain of the density. This

observation supports the structure used to approximate indirect effects. Second, our iden-

tification methodology succeeds in recovering the true impulse responses both qualitatively

and quantitatively. Third, information on direct effects reduces the uncertainty surrounding

the identification significantly. In particular, the length of the 68% credible interval of the

at-impact response of output is shrinks by 36 percentage points once we take into account

the information from direct effects. Moreover, the interval becomes more concentrated in the

positive region, even though we place a symmetric prior for the output response.

We apply the proposed identification methodology to investigate the macroeconomic and

distributional consequences of stimulus transfer policies in the United States. With our

framework, we compare two types of policies: (i) a lump-sum cash transfer policy in which

each household receives $100 per family member, and (ii) a targeted cash transfer policy

in which households in the bottom 20% of the income distribution receive $500 per family

member. We find that these two policies have only small positive effects on output, an obser-

vation consistent with the evidence that cash transfers are not effective tools for stimulating

the macroeconomy (e.g., Ramey 2025). On the other hand, we observe a persistent reduction

in consumption inequality, measured by the Gini coefficient. This reduction is larger under

the targeted policy. Moreover, the total effect on the Gini coefficient is larger in magnitude

than the direct effect, suggesting that indirect channels amplify the reduction in consump-

tion inequality. These findings highlight the importance of general equilibrium mechanisms
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in assessing the distributional consequences of aggregate shocks.

Literature. This paper contributes to the literature that leverages microeconometric tools to

investigate research questions at the aggregate level. Regressions based on microdata cannot

be applied directly to derive aggregate implications because time-fixed effects absorb indirect

feedback—known as the “missing intercept” problem. A typical response to this problem

is to recover indirect effects from fully specified general equilibrium models calibrated with

parameters estimated from micro regressions (e.g., Nakamura and Steinsson 2014). The

implied total effects depend heavily on the details of the structural models.

Several papers propose methods to address the missing intercept problem without re-

sorting to specific quantitative general equilibrium models (Chodorow-Reich 2019; Herreno,

2023; K. Huber 2023; Matthes et al. 2024; Sarto, 2025; Wolf 2023). Wolf (2023) shows that,

under stylized heterogeneous-agent models satisfying certain assumptions, one can construct

an approximation of the indirect effect using the aggregate fiscal multiplier. We provide a

solution to a similar question, but rather than relying on a general equilibrium model as a

theoretical background, we instead exploit heterogeneity in direct effects as a primary source

of identification. Interestingly, our framework also implies the relevance of aggregate shocks

other than the shock of interest in recovering the indirect effect, the observation echoing his

approximation methodology.

Matthes et al. (2024) extend the factor model in Matthes and Schwartzman (Forthcom-

ing) to develop an identification scheme relying on heterogeneous exposure of economic units

to aggregate shocks.1 Their framework requires a sufficiently long panel of units recorded fre-

quently enough. Such data are available at the aggregate level (countries) or semi-aggregate

level (regions and sectors), but are rarely available at the micro level, especially for house-

holds.2 We use functional variables rather than panel data, and thus our method is feasible

with repeated cross-sectional micro observations. That being said, since their methodology

has its own advantages relative to ours (e.g., it can accommodate multiple unit-level variables,

such as local output and government spending; it can combine numerous weak restrictions

to achieve tight identification), we regard our method as a complement to theirs.

1Sarto (2025) also uses a factor model to solve the missing intercept problem. Instead of heterogeneous
exposures as in Matthes et al. (2024), his identification conditions involve exclusion restrictions.

2The Survey of Consumer Finance contains detailed information on household balance sheet, but the
data is collected triennially and does not exhibit a panel structure. The Survey of Consumer Expenditure
collects the data each quarter, while it keeps track of the same household for five consecutive quarters at
most. The Panel Study of Income Dynamics does have a panel structure and is available from 1968, although
the data is collected once every two years, which makes it hard to apply time-series econometric tools.
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The empirical framework in this paper treats a time-series of cross-sectional densities as

an endogenous variable. There is a growing literature on incorporating such functional obser-

vations into econometric models to study the effects of macroeconomic shocks on inequality

(Y. Chang et al. 2025; M. Chang et al. 2024; M. Chang and Schorfheide 2024; F. Huber et al.

2024), yield curve (Y. Chang et al. 2023; Inoue and Rossi 2021), heterogeneity in expecta-

tions (Y. Chang et al. 2022; Meeks and Monti 2023), and climate change (Y. Chang et al.

2024a). The novelty of this paper relative to those works lies in developing a new scheme for

identifying structural shocks from functional observations with the help of microeconometri-

cally identified parameters. To obtain the finite-dimensional approximation of the functional

observations, we rely in particular on the functional principal component (FPC) basis, whose

theoretical properties have been well studied by, for example, Bosq (2000), Ramsay and

Silverman (2005), Mas (2007), and Y. Chang et al. (2024b).

Outline. The rest of this paper is organized as follows. Section 2 outlines our identification

scheme. Section 3 introduces the statistical model and discusses the dimension-reduction

method and prior specifications. Section 4 validates the identification approach using the

quantitative HANK model. We provide an application of our method and investigate the

transfer stimulus policy in Section 5. Section 6 concludes.

2 Background for Identification

To illustrate the main idea for identification, we consider a stylized representation of heterogeneous-

agent problems. We assume that there is a single aggregate shock εt which affects agents’

decisions3. We are interested in how the shock propagates through the distribution of the

endogenously determined idiosyncratic variable c. The measure of agents at time t is de-

noted by µt, and the value function is denoted by vt. We suppose that the measure and value

function evolve according to

µt`1 “ Λ pµt, vt, Xtq (1)

vt “ V pvt`1, Xt, εtq (2)

3We interpret this shock as an MIT shock (i.e., a one-time unexpected disturbance) and explore the
perfect-foresight dynamics in response to the shock. Our discussion is built on linearized economies where
the certainty equivalence holds. Under the certainty equivalence, the impulse response from the state space
representation coincides with the perfect foresight transition following the MIT shock (Boppart et al., 2018).

6



where Xt P Rk is a vector of aggregate inputs for the individual problem (e.g., prices). This

specification generalizes the representation of heterogeneous-agent problems in Auclert et al.

(2021) by treating µt and vt as functions, rather than vectors of values at discrete grid points.

Most dynamic heterogeneous-agent models exhibit this structure.

Let ft denote the density of c. The future value function vt`1 and current inputs Xt

determine the current policy function, which in turn, combined with the measure µt, forms

ft. Given equations (1) and (2), the density ft is written as a function of the measure µt and

the sequences pεt`hqhě0 and pXt`hqhě0.

ft “ F pµt, εt, εt`1, ¨ ¨ ¨ , Xt, Xt`1, ¨ ¨ ¨ q (3)

Note that in general equilibrium, εt influences current and future aggregate inputs tXt`huhě0.

We should account for the propagation through those inputs when considering the effect of

εt. By contract, µt is not affected by εt because µt is predetermined at period t ´ 1. Then

equation (3) implies that the response of ft to the shock εt is computed as the sum of direct

and indirect effects:
dft
dεt

“ Fε
loomoon

Direct Effect

`F0
dXt

dεt
` F1

dXt`1

dεt
` ¨ ¨ ¨

loooooooooooooomoooooooooooooon

Indirect Effect

(4)

where Fε is the Fréchet derivative of F with respect to ε, and Fh (h “ 0, 1, 2, ¨ ¨ ¨ ) is the

Fréchet derivative of F with respect to Xt`h. The first term, labeled the direct effect,

captures the first-round effect (i.e., how the shock itself influences ft). The indirect effect is

captured by the second term and the subsequent ones, reflecting how the shock propagates

through current and future aggregate inputs. As a sum of these two, the total effect dft
dεt

is

the at-impact (contemporaneous) impulse response of ft to εt.

Example 1. Consider an economy with aggregate and idiosyncratic uncertainty similar to

the setup in Krusell and Smith (1998). Household i P r0, 1s is endowed with asset ai,0 and

productivity ei,0, and solves the intertemporal optimization problem:

max
8
ÿ

t“0

βtupci,tq
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subject to

ci,t ` ai,t`1 “ p1 ´ τtqwtei,t ` p1 ` rtqai,t ` ηpai,t, ei,tqεt

ai,t`1 ě 0

ei,t follows a Markov process P pe1
| eq

(5)

where εt is an exogenous aggregate shock interpreted as an aggregate transfer policy. The

coefficient of εt is a function ηp¨q, reflecting the sensitivity of household income to the shock.

This sensitivity function ηp¨q can be determined by the policymaker. The amount of transfer

received by household i is given by ηp¨qεt. When ηp¨q is a constant function, εt is a shock to

the lump-sum payment. In this economy, the aggregate inputs for the consumers’ decisions

are Xt “ pτt, wt, rtq
1. The value function vtpa, eq is determined as

vtpa, eq “ max

"

upcq ` β

ż

P pe1
| eqvt`1pa

1, e1
qde1

*

subject to the constraints (5). The right-hand side defines the function V p¨q in equation (2).

The measure of state variables µtpa, eq evolves as follows:

µt`1pA, Eq “

ż

P pe1
P E | eq1 tat`1pa, eq P Au dµtpa, eq

where A, E P σpRq are measurable subsets of the asset and productivity spaces, and at`1p¨q

denotes the policy function for assets. The policy function is computed jointly with the value

function and thus depends on vt`1, Xt, and εt. The right-hand side gives the law of motion

Λp¨q in equation (1).

The sequence of aggregate inputs tXtutě0 is influenced by εt through the general equi-

librium propagation. For example, households adjust their consumption, savings, and labor

supply in response to the shock, which influences the demand for consumption goods and

the supply of production inputs. This has an effect on prices, which in turn affects house-

hold behavior. In addition, since agents are forward-looking, not only current prices but also

future prices matter for current decisions via their effect on vt`1.

2.1 Recovering Direct Effect from Micro Evidence

The central element for shock identification is the direct effect Fε. Given knowledge of the

direct response to the shock for each agent, we can compute how the distribution of c responds
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to εt abstracting from changes in aggregate inputs. To see this, we consider the following

individual-level regression, driven by the linearized policy function.4

ci,t ´ ci,ss “ ϕpsi,ssq
loomoon

ϕi

ˆpηiεtq ` γt ` ui,t (6)

where γt denotes a time fixed effect. If the effect from the sequence pXt, Xt`1, ¨ ¨ ¨ q (i.e.,

indirect effect) is common for every individual, it is removed by the time fixed effect γt. The

explanatory variable ηiεt represents how each individual is affected by the shock. In the

context of transfer stimulus, it is the payment that agent i receives at time t. The coefficient

ϕ is interpreted as the marginal propensity to consume (MPC).

Importantly, we allow ϕ to be individual-dependent by specifying it as a function of

pre-shock individual characteristics si,ss. For example, standard incomplete market models

imply that households facing borrowing constraints exhibit larger MPCs than unconstrained

households. Indeed, the empirical literature shows that financial characteristics (e.g., partic-

ipation in the credit market and holdings of liquid and illiquid assets) are important sources

of MPC heterogeneity, and other characteristics (e.g., impatience) are also relevant.5 Econo-

metricians typically specify the functional form of ϕpsq (e.g., a parametric function of s or

by grouping individuals based on s), while the model (6) is general enough to accommodate

nonparametric approaches, including functional coefficient models.6

The regression (6) yields estimates of pϕiqi, which we then use to construct the perturbed

density under a unit shock. This leads directly to the density-based object Fε. To a first

order approximation, Fε is written as

Fε « F p1, µss, Xss, Xss, ¨ ¨ ¨ q ´ F p0, µss, Xss, Xss, ¨ ¨ ¨ q

We take the difference between two consumption densities. First, F p0, µss, Xss, Xss, ¨ ¨ ¨ q

is the steady state density. Second, F p1, µss, Xss, Xss, ¨ ¨ ¨ q corresponds to the case where

4In typical dynamic heterogeneous consumer models, households are still subject to idiosyncratic produc-
tivity shocks even at the steady state. Hence, the notation ci,ss should not be interpreted as the deterministic
steady-state level of c of individual i. Nevertheless, we adopt this notation to maintain consistency with
standard regression practice. The index i can be interpreted as representing a particular combination of
idiosyncratic state variables of households (e.g., asset a and productivity e in Example 1).

5Just to name a few, see Jappelli and Pistaferri (2014), Fagereng et al. (2021), and Ampudia et al. (2024)
for empirical evidence on MPC heterogeneity.

6Recently, Lewis et al. (Forthcoming) stress the importance of households’ latent characteristics to explain
MPC heterogeneity. Equation (6) does accommodate their specification: We can simply incorporate latent
factors as an input for ϕp¨q.
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individuals are subject to the unit-sized direct effect but no indirect effect. The latter is

equivalent to the density of pci,ss ` ϕiηiqi, i.e., the steady-state consumption augmented by

the individual-specific direct response. This density can be constructed given knowledge of

the individual-specific direct effect ϕi as well as the policy design ηi. The resulting Fε is the

key object in our identification strategy.

2.2 MAR Model and Identification from Direct Effects

We identify the shock εt using information on direct feedback Fε and investigate the dy-

namic propagation of the shock in the mixed-autoregressive (MAR) framework, which is an

autoregression where both aggregate and functional observations are included as endogenous

variables. We typically do not include future aggregates (or expectations of them) in a VAR

because the autocorrelation captured by a VAR allows us to analyze these future variables.

However, this practice causes a problem in our application because indirect effects partly

stem from future aggregates, and thus we fail to capture such feedback.7

To see how the omission of future inputs matters in our analysis, consider the following

simplified structure, which closely follows the structural MAR model we take to the data.

Xt “ CXXXt´1 ` CXfft´1 ` BXεt

ft “ AfXXt ` CfXXt´1 ` Cffft´1 ` Bfεt

The first equation models the dynamics of Xt. The coefficient CXX is a linear operator

such that CXX : Rk Ñ Rk, and CXf is a linear operator such that CXf : H Ñ Rk where

H denotes a separable Hilbert space of square integrable functions on R. The specification

in the second equation follows the decomposition (4) by allowing indirect feedback from Xt

to ft, but terms involving future aggregates are excluded. The objective of this model is

to highlight the issues surrounding shock identification. Shocks other than our object of

interest, εt P R, are deliberately omitted in order to focus on the dynamics driven by εt. In

addition, the lag order is restricted to one for the sake of exposition, but it is straightforward

7There is a growing literature on aggregate VARmodels incorporating subjective expectations from survey
evidence (e.g., Doh and Smith 2022; Adams and Barrett 2025). Incorporating such variables in the system
might be helpful for identification in our model. We nevertheless stick to the model without expectations
for the following reasons. First, our context requires including expectations at arbitrarily long horizons.
Accommodating expectations for all variables and horizons greatly expands the size of the statistical model
even with horizon truncation. Second, data on expectations have a limited scope in terms of covered horizons.
For example, the Survey of Professional Forecasters (operated by the Federal Reserve Bank of Philadelphia)
provides expectations of various macro variables up to one year ahead from the time the survey is taken,
although long-term expectations are available for some key variables.
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to extend the following discussion to a model with a general lag order.

Combining these two equations yields

«

I 0

´AfX I

ff «

Xt

ft

ff

“

«

CXX CXf

CfX Cff

ff «

Xt´1

ft´1

ff

`

«

BX

Bf

ff

εt

Moreover, we can rewrite the model above as the canonical form for a structural autoregressive

model.
«

Xt

ft

ff

“

«

GXX GXf

GfX Gff

ff «

Xt´1

ft´1

ff

`

«

HX

Hf

ff

εt

This representation gives HX and Hf , at-impact total responses of Xt and ft respectively,

and hence it follows dXt

dεt
“ HX and dft

dεt
“ Hf .

To evaluate the consequences of omitting future aggregate variables, note that the au-

toregressive structure implies the relationship between responses at horizon k and at-impact

responses dXt`h

dεt
“ Gh

XX
dXt

dεt
` Gh

Xf
dft
dεt

for h ě 0 where Gh
XX is the upper-left block of Gh and

Gh
Xf is the upper-right block of Gh. Substituting it into equation (4) implies

dft
dεt

“
`

I ´
`

F1GXf ` F2G
2
Xf ` ¨ ¨ ¨

˘˘´1
Fε

loooooooooooooooooooooomoooooooooooooooooooooon

:“pI´Mf q´1Fε“Bf

`
`

I ´
`

F1GXf ` F2G
2
Xf ` ¨ ¨ ¨

˘˘´1 `

F0 ` F1GXX ` F2G
2
XX ` ¨ ¨ ¨

˘

looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

AfX

dXt

dεt

(7)

This equation characterizes Bf and AfX in the model above. The first term Bf is analogous

to direct effect Fε. However, it is distorted by the inverse of I ´ Mf : The direct effect is

mixed with autoregressive feedback G as well as the indirect effect from future aggregates

pF1, F2, ¨ ¨ ¨ q. The second term captures the effect through current aggregates Xt, while it is

again compounded by G and pF1, F2, ¨ ¨ ¨ q. Intuitively, because of the autoregressive structure,

responses of future aggregates to the current shock can be expressed as a linear combination

of at-impact responses of both ft and Xt. These responses appear in the coefficients to Fε

and dXt{dεt. We can estimate the reduced form parameters pGXf , G
2
Xf , ¨ ¨ ¨ q from the data,

but pF0, F1, ¨ ¨ ¨ q cannot be estimated since the indirect effect is absorbed by the inclusion of

time-fixed effects in the panel regression. In general, identification requires restricting some

structural parameters. We would like to restrict Bf using the information on the direct effect

Fε to achieve identification, but it is not possible to recover Bf from Fε alone without further

assumptions.
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Our approach is to compute an approximation of the sequence pF0, F1, ¨ ¨ ¨ q from AfX ,

and combine it with Fε to approximate Bf . The coefficient AfX is defined by the autore-

gressive parameters G as well as pF0, F1, ¨ ¨ ¨ q, and G is the reduced form parameter we can

estimate without any identification assumption. Therefore, if we impose some structure on

pF0, F1, ¨ ¨ ¨ q, AfX provides information to infer the sequence.

As a baseline, we approximate pF0, F1, ¨ ¨ ¨ q with pF̃0, F̃1, ¨ ¨ ¨ q where F̃h “ ρhF̃0 for a scalar

ρ P p0, 1q. Then, we obtain the following approximation.

AfX «

´

I ´

´

ρF̃0GXf ` ρ2F̃0G
2
Xf ` ¨ ¨ ¨

¯¯´1 ´

F̃0 ` ρF̃0GXX ` ρ2F̃0G
2
XX ` ¨ ¨ ¨

¯

From this, we compute F̃0 as follows.

F̃0 “ AfX

`

Ik `
`

ρGXX ` ρ2G2
XX ` ¨ ¨ ¨

˘

`
`

ρGXf ` ρ2G2
Xf ` ¨ ¨ ¨

˘

AfX

˘´1
(8)

In practice, we can select ρ to minimize the approximation error. With F̃0 obtained in this

way, we approximate Bf as

B̃f “

´

I ´

´

ρF̃0GXf ` ρ2F̃0G
2
Xf ` ¨ ¨ ¨

¯¯´1

Fε (9)

which serves as the primary source of identification. That is, we restrict Bf to be B̃f so

that the shock can be interpreted as the one we are interested in. Since F̃0 can be solved

analytically, this approximation scheme simplifies numerical implementation.

One might worry that introducing a particular decaying structure on the sequence pF0, F1, ¨ ¨ ¨ q

is a crucial assumption: It implies that the sequence decays at the same rate across the entire

domain of the density and for every variable in Xt. Nevertheless, in Section 4, we see that

the approximation B̃f closely matches the true Bf in a quantitative HANK model featuring

liquid and illiquid assets and standard frictions.

2.3 Identification in Practice

Although we argued that the approximation strategy for Bf performs well in a quantitative

model, it is still an approximation; it does not exactly reproduce Bf . Moreover, the direct

effect Fε is subject to uncertainty because it is based on ϕp¨q which itself is an estimated

object. For these reasons, fixing Bf at B̃f for identification is far from the best option. Even

if there were sufficient reasons to believe that the approximation strategy works well and one
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imposed Bf “ B̃f dogmatically, this restriction would not be sufficient to just identify the

shock in general.

We partially identify the shock by imposing only plausible restrictions rather than impos-

ing strong identification assumptions, such as zero restrictions. In particular, we follow the

literature starting from Baumeister and Hamilton (2015) and achieve the shock identifica-

tion by incorporating prior information on structural parameters. The methodology outlined

above provides the information on Bf conditional on AfX . We use this information to specify

the conditional prior for Bf given AfX as a distribution centered at the approximation B̃f .

This method allows researchers to reflect uncertainty in the identification restrictions,

helping address the issues discussed above. First, this strategy takes into account the uncer-

tainty surrounding the identification condition. Unlike strategies that restrict certain struc-

tural parameters to fixed values (such as Cholesky identification and long-run restrictions),

our prior specification allows for ambiguity in the identification conditions. This feature is

particularly useful in our framework because, as discussed above, we do not have precise

information on Bf ; we only know its approximation. Second, we take into account the fact

that Fε itself might be based on estimated objects. We reflect uncertainty pertaining to the

estimation of the direct effect ϕp¨q by imposing a less restrictive prior.

Another advantage of this identification scheme is its ability to incorporate prior informa-

tion beyond the direct effect. For example, if we are sure that the transfer policy increases

the output, we may incorporate this knowledge by specifying the distribution of the corre-

sponding element of BX to have support only on positive values (e.g., Gamma or truncated

normal distribution). In addition, we may incorporate information regarding AfX to sharpen

the identification. We will revisit these points when we introduce the full statistical model.

3 Empirical Framework

This section extends the single-shock illustration in the previous section and presents the

baseline empirical model. We also introduce a dimension-reduction method to obtain a

finite-dimensional expression of our econometric framework. Our discussion then turns to

details on estimation, such as identification, estimation algorithm, and prior specifications.

3.1 MAR Model

We denote the separable Hilbert space of square integrable functions on R as H. The Hilbert

space H is equipped with the inner product xg, hy “
ş

gprqhprqdr (g, h P H) and the tensor
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operator g b h satisfying pg b hqv “ xv, hyg for v P H. Let Xt “ rX1t, ¨ ¨ ¨ , Xkts
1

P Rk denote

a vector of aggregate variables, zt P R another aggregate variable, and ft a random function

in H representing a cross-sectional density. Our structural MAR model is given by

»

—

–

I 0 0

´AzX 1 0

´AfX 0 I

fi

ffi

fl

loooooooooomoooooooooon

A

»

—

–

Xt

zt

ft

fi

ffi

fl

looomooon

Yt

“ CpLq

»

—

–

Xt´1

zt´1

ft´1

fi

ffi

fl

loooomoooon

Yt´1

`

»

—

–

BXX BXz BXf

0 Bzz Bzf

0 Bfz Bff

fi

ffi

fl

looooooooooooomooooooooooooon

B

»

—

–

εXt

εzt

εft

fi

ffi

fl

looomooon

εt

(10)

The augmented variable Yt lies in Rk`1 ‘H where ‘ represents the direct sum of two spaces.

The lag polynomial CpLq is defined as CpLq “ C1 `C2L` ¨ ¨ ¨ `CpL
p´1. Linear operators A

and B map the space Rk`1 ‘ H to itself, and their sub-blocks map the space of the variable

indexed by the second subscript to the space of the variable indexed by the first subscript

(e.g., AzX : Rk Ñ R, and Bfz : R Ñ H). Every variable is assumed to be demeaned so that

constant terms need not be included.8 The structural shocks εt are mutually orthogonal and

serially uncorrelated: Epεt b εsq “ 1tt “ suI.

We are interested in identifying a shock εzt . We partition the aggregate variables into one

variable directly tied to the shock, zt, and others Xt. For example, if we are interested in a

transfer shock, zt would be the aggregate measure for transfers and Xt would be the collection

of other relevant aggregate variables. This setup allows us to represent the propagation of

the shock εZt to ft as the sum of component through Bfz and component through Xt via

AfX . The counterparts of AfX , BX , and Bf in the single-shock exposition are AfX , BXz,

and Bfz respectively.9

This model can be represented as the canonical form for structural autoregressive models

by left-multiplying A´1.

Yt “ GpLqYt´1 ` Hεt (11)

where H :“ A´1B is an operator representing the at-impact impulse response and GpLq :“

A´1CpLq “ G1 ` G2L ` ¨ ¨ ¨ ` GpL
p´1 is the lag polynomial. The reduced-form error has

variance Σ “ HH 1.

8For functional observations, demeaning here implies a temporal demeaning ft´
1
T

ř

t ft. This differs from
cross-sectional demeaning of micro observations at the same time period, which ensures

ş

rftprqdr “ 0,@t.
9One might worry that we are imposing some identification assumptions by parameterizing pA,Bq in the

way described in equation (10). Proposition 3 in D shows that it is not the case. This proposition establishes
the one-to-one relationship between H and pA,Bq under mild invertibility and boundedness conditions. That
is, for (almost) any at-impact impulse response H, we can find pA,Bq consistent with H, and vice versa. In
this sense, our parametrization of pA,Bq does not rule out any at-impact impulse responses.
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3.2 Reducing Dimensionality

The MAR model (10) cannot be estimated because ft is infinite-dimensional. We derive

the finite-dimensional representation of the model, following Y. Chang et al. (2024b) and Y.

Chang et al. (2025). See Appendix C for a more detailed exposition of the approximation

approach.

We consider an arbitrary orthonormal basis pviqiě1 spanning the space Rk`1 ‘ H. We

approximate the functional variable ft by restricting attention to the finite subset pviq
k`1`m
i“1 ,

consisting of the first pk ` 1 ` mq basis elements. Define, for any Y P Rk`1 ‘ H,

pY q :“

»

—

—

–

xv1, Y y

...

xvk`1`m, Y y

fi

ffi

ffi

fl

P Rk`1`m.

We also define, for any linear operator P on Rk`1 ‘ H,

pP q :“ rxvi, Pvjysi,j“1,¨¨¨ ,k`1`m P Rpk`1`mqˆpk`1`mq

It can then be shown that (11) can be approximated as

pYtq “ pGpLqqpYt´1q `

»

—

–

HXX HXz pHXf q

HzX Hzz pHzf q

pHfXq pHfzq pHff q

fi

ffi

fl

loooooooooooooooomoooooooooooooooon

pHq

pεtq (12)

This expression represents the approximated MAR as a VAR with pk ` 1 ` mq endogenous

variables. This can be rewritten in a form consistent with (10).

»

—

–

I 0 0

´AzX 1 0

´pAfXq 0 I

fi

ffi

fl

looooooooooomooooooooooon

pAq

»

—

–

Xt

zt

pftq

fi

ffi

fl

looomooon

pYtq

“ pCpLqq

»

—

–

Xt´1

zt´1

pft´1q

fi

ffi

fl

looooomooooon

pYt´1q

`

»

—

–

BXX BXz pBXf q

0 Bzz pBzf q

0 pBfzq pBff q

fi

ffi

fl

looooooooooooooomooooooooooooooon

pBq

»

—

–

εXt

εzt

pεft q

fi

ffi

fl

(13)

where pftq is an m-dimensional vector. Estimation can be carried out using the standard

VAR methods, such as OLS, maximum likelihood, or Bayesian approaches.

Although this approximation strategy works for any orthonormal basis, its practical per-
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formance depends heavily on the choice of basis. The ideal basis is the one that explains

the temporal fluctuations of functional observations effectively, thereby improving estimation

efficiency. We follow the recommendation by Y. Chang et al. (2024b) and use the functional

principal component (FPC) basis as the baseline. One can show that, for a fixed m, the FPC

basis captures more functional variation than any other orthonormal basis. Indeed, for most

functional observations used in economic empirical analyses, only a few FPC basis functions

are sufficient to capture the bulk of the variation. This allows us to maintain parsimony

without sacrificing informational content in the estimation.10

3.3 Identification, Bayesian Estimation, and Prior

We estimate the VAR representation of the approximate MAR, (12), in a Bayesian framework

by assuming that the error is i.i.d. standard Gaussian
´

pεXt q1, εzt , pεft q1

¯1

„ Np0, Ik`1`mq.

3.3.1 Identification

The identification problem comes from the fact that there are multiple at-impact impulse

responses consistent with the reduced-form variance pΣq. To see this, let L be a lower

triangular matrix such that pΣq “ LL1, and Q1 and Q2 be orthogonal matrices. Then, both

at-impact responses pH1q :“ LQ1 and pH2q :“ LQ2 imply the same reduced-form variance

pΣq. As demonstrated previously, we identify the model by placing a non-dogmatic prior on

Q. In particular, we place a larger weight on a particular region in the domain of Q (i.e.,

the space of orthogonal matrices) so that the shock of interest has economically meaningful

interpretation.

More formally, our goal is to find the posterior distribution of ppGq, pΣq, Qq where pGq “

ppG1q, ¨ ¨ ¨ pGpqq is the autoregressive parameter. Note that these parameters allow us to

compute ppAq, pBq, pCqq directly. We specify the prior distribution as

p ppGq, pΣq, Qq “ p ppGq, pΣqq p pQ | pGq, pΣqq

The first term on the right-hand side gives the prior for reduced-form parameters. We may

impose the standard distributional assumption (e.g., normal-inverse-Wishart distribution)

for this component to take advantage of well-known posterior samplers for the reduced-form

10One of the concerns in applying the FPC basis to densities is that one may not fully enforce the unit-
integral and non-negativity constraints. Since we demean the functional observations, the integral constraint
is already satisfied in our analysis. Moreover, violations of the non-negativity constraint are mild in practice.
See Appendix C for more detailed discussion.
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parameters. The second term represents the prior for structural parameters conditional on

the reduced-form parameters. Importantly, this component can be expressed in terms of

structural parameters of interest. For example, since both pAq and pBq are functions of

pΣq and Q, p pQ | pGq, pΣqq can be specified in terms of a prior for pAq and pBq. This prior

specification separates the computation of the posterior distribution into the estimation part

(drawing the reduced-form parameters) and the identification part (drawing the structural

parameters conditional on reduced-form parameters).

3.3.2 Estimation Algorithm

The Bayesian estimation can be performed hierarchically: First, we draw the reduced-form

parameters ppGq, pΣqq from their posterior distribution. We can employ well known algo-

rithms to make this step done under the standard distributional assumption on the prior.11

Second, conditional on the reduced-form parameters drawn in the previous step, we draw

the orthogonal matrix Q. We rely on the Metropolis-Hastings algorithm for this step: We

multiply Q at the previous iteration with the exponential of a random skewed-symmetric

matrix to propose a candidate of a new Q. Then we accept or reject the proposal based on

the ratio of the posterior kernels. This proposal distribution is centered at the previous Q,

and makes sure candidates are orthogonal again. See Appendix B for more details on the

Bayesian algorithm.

3.3.3 Prior for Structural Parameters

We discuss the prior specification for structural parameters ppQ | pGq, pΣqq, which plays a

central role in our shock identification. We represent the conditional prior of Q as

ppQ | pGq, pΣqq91tQ P Opk ` 1 ` mqu ˆ p pBXX , BXz, pBXf q | pGq, pΣqq
loooooooooooooooooomoooooooooooooooooon

Xt block (1st row)

ˆ p pAzX , Bzz, pBzf q | pGq, pΣqq
looooooooooooooooomooooooooooooooooon

zt block (2nd row)

ˆ p ppAfzq, pBfzq, pBXf q | pGq, pΣqq
looooooooooooooooooomooooooooooooooooooon

pftq block (3rd row)

up to a scaling constant so that it integrates to one with respect to Q, where Opk` 1`mq is

a set of pk ` 1`mq ˆ pk ` 1`mq orthogonal matrices. We partition the model into the first,

second, and third rows in (13). We assume independence of parameters across blocks, while

allowing dependence of them belonging to the same block. We are especially interested in

11See, for example, Koop and Korobilis (2010) and Kilian and Lütkepohl (2017).
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the third row, which is a collection of the equations that determines pftq. We parameterize

this term as

p ppAfzq, pBfzq, pBXf q | pGq, pΣqq “p ppBfzq | pAfzq, pBff q, pGq, pΣqq

ˆ p ppAfzq | pBXf q, pGq, pΣqq

ˆ p ppBXf q | pGq, pΣqq
(14)

The first term gives the conditional prior of pBfzq (compounded direct effect) given pAfzq,

pBff q, and reduced-form parameters. This term is where we can impose our identification

strategy. Given the conditioned variables, we can compute the approximation ĆpBfzq based

on the finite-dimensional analogue of equation (9).

ĆpBfzq “

´

I ´

´

ρĄpF0qpGXf q ` ρ2 ĄpF0qpG
2
Xf q ` ¨ ¨ ¨

¯¯´1

pFεq (15)

where ρ P p0, 1q, pFεq is a finite-dimensional approximation of Fε given the basis used to

derive the approximate MAR, and

ĄpF0q “ pAfXq
`

I `
`

ρpGXXq ` ρ2pG2
XXq ` ¨ ¨ ¨

˘

`
`

ρpGXf q ` ρ2pG2
Xf q ` ¨ ¨ ¨

˘

pAfXq
˘´1

(16)

We specify the conditional prior of pBfzq to be the distribution centered at ĆpBfzq. We assign

a positive prior variance to it so that we reflect the approximation and estimation errors

associated with the direct effect.

The prior for parameters in the other blocks can be specified in application-specific ways.

We may let a prior for every other parameter uninformative by setting a large prior variance.

However, combining informative prior for some of those parameters with the information

imposed on pBfzq helps to shrink the identification set. Here we give a general guideline

on what we can impose, and we will describe our prior choice for simulation exercises and

empirical applications later.

Responses of Aggregate Variables to Shock of Interest (BXz and Bzz). Aggregate

variables Xt responds to the shock of interest εzt simultaneously, and size of the response is

given by BXz. One can impose additional restrictions for this part if a researcher has any

belief about how Xt responds to the shock. We may specify lower- or upper- bounds for

those variables such as sign restrictions, or impose best guess of the response as prior mean.
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In particular, it is relatively easy to predict Bzz, i.e., how much the unit shock increases/

decreases the variable tied to the shock zt. For example, one can approximate the aggregate

scale of the stimulus payment once we know the population size of the targeted individuals

and how much each of them receive. Reflecting such information would be helpful to pin

down the scale of the unit shock relative to the economy, thereby circumventing the size

ambiguity (Stock and Watson 2018).

Responses to Other Aggregate Shocks (BXX). We may sharpen the identification

of εzt by identifying other aggregate shocks εXt . To see why, recall that, in equation (16),

we construct the approximation of indirect effect from pAfXq. One can derive pAfXq “

pHfXqH´1
XX , implying that pAfXq is driven from the responses of Xt and ft to εXt . Identifying

aggregate shocks through restrictions on BXX therefore gives a more precise approximation

of indirect effects.

The observation that indirect effects are governed by aggregate shocks other than the

shock of interest is related to the statement of the demand equivalence theorem in Wolf

(2023). The theorem shows that the general equilibrium propagation of private consumption

is identical to that of government spending under certain assumptions on the economic envi-

ronment12, motivating us to use the empirical evidence on the aggregate fiscal multiplier to

construct the indirect effect. Our framework also suggests the usefulness of aggregate shocks

other than the shock of interest in approximating the indirect effect, while the shocks that

can be utilized here are not limited to the government spending shock, and we do not require

the assumptions for the demand equivalence theorem.

To identify those aggregate variables, one may rely on the typical identification method-

ologies in empirical macroeconomics (e.g., imposing exclusion restrictions, or finding instru-

mental variables). Note, however, that we do not necessarily assign structural interpretation

for those aggregate shocks, as we are not interested in the propagation of them. Instead, we

need to distinguish the shocks driving the variations in aggregate variables, εXt , with those

driving the variations in functional variables, pεft q. In our applications, we impose agnostic

sign restrictions on BXX so that each aggregate shock is interpreted as a main driver of the

fluctuation in the corresponding aggregate variable.13

12Those assumptions are that, (i) Households and government consume the same final good, (ii) borrowing
and saving interest rates are identical, and (iii) the wealth effect for labor supply is not present or wages are
perfectly sticky.

13Alternatively, one may leverage the idea of the “max-share” identification (Uhlig 2004; Angeletos et al.
2020) so that we identify the aggregate structural shocks which account for a large part of business cycle
fluctuation.
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4 Validating Identification Approach with HANK

This section examine how our methodology performs in a quantitative heterogeneous agent

New Keynesian (HANK) model. We overview the environment, evaluate our approximation

procedure used to reflect the information on direct effects, and apply our Bayesian sample

to the simulated data.

4.1 Environment

To provide a laboratory for our analysis, we construct a two-asset medium-scale heterogeneous

agent New Keynesian model. We provide an overview of the model here. See Appendix A

for a more detailed description of the model’s structure.

There are heterogeneous households, a final good producer, intermediate good produc-

ers, a capital good producer, a mutual fund, a labor union, and fiscal and monetary policy

authorities. Households can hold illiquid and liquid assets and optimize consumption and

saving subject to the borrowing constraint and the law of motion for idiosyncratic productiv-

ity. Holdings of liquid assets incur a cost for a liquidity premium, while illiquid assets can be

adjusted each period only with an i.i.d. probability. Labor supply is determined by the labor

union facing a wage adjustment cost, giving rise to the wage Phillips curve. The capital good

producer makes investments subject to adjustment costs and rents capital to intermediate

good producers. The optimization behavior of intermediate good producers, subject to price

adjustment costs, leads to the price Phillips curve. Finally, the policy rate is determined by

the Taylor rule, and the average labor tax rate is set according to the tax rule.

The economy is subject to six aggregate shocks: total factor productivity, government

spending, price markup, wage markup, monetary policy, and transfers. The transfer shock

εtrt „ Np0, 1q is our object of interest. o illustrate the mechanism of this shock, we present

the budget constraint for the household with state pa, b, eq, where a and b denote the holdings

of illiquid and liquid assets respectively, and e is the idiosyncratic productivity.

c ` a1
` b1

“ p1 ` rp,tqa ` p1 ` rp,t ´ ωqb ` p1 ´ τ yt q pytpeqq
1´ξ

`
`

1 ´ τΠ
˘

Πtpeq ` ηpa, b, eqσtrεtrt

ytpeq “ wthtΓtpeq

(17)

Households receive financial income from the first two terms on the right-hand side, where

holdings of liquid assets b carry the liquidity premium ω. Pre-tax labor income yt is scaled by

an incidence factor Γt that governs how cross-sectional income responds to aggregate labor
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fluctuations. It is then transformed into post-tax income by the progressive tax rule à la

Heathcote et al. (2017). The dividend Πtpeq is allocated proportionally to e and is taxed by

a fixed tax rate τΠ.

The final term on the right-hand side of the budget constraint represents government

transfers, allocated across individuals according to the policy design ηpa, b, eq. In the baseline

environment, we study the shock to a lump-sum transfer by setting the sensitivity to be

ηp¨q “ 1 for every state variable. One standard deviation corresponds to 1% of steady-state

aggregate output (normalized to be 1), implying σtr “ 0.01.

4.2 Solution Method and Simulation

We solve the model using the sequence space Jacobian (SSJ) method (Auclert et al. 2021),

which provides linearized impulse responses of aggregate variables to each shock. Given

those impulse responses, we find the response of the cumulative consumption distribution

with backward-forward iterations. The SSJ procedure yields impulse responses over horizons

0, 1, . . . , T , where T is chosen to be sufficiently large. These responses allow us to represent

both aggregates and distributions as a moving average process.

In numerical computation of heterogeneous agent models, we typically need to discretize

the space of idiosyncratic states (productivity e and liquid and illiquid asset holdings a and b

in our model) using grids. The combination of discretized idiosyncratic states and the pres-

ence of borrowing-constrained households leads to a non-smooth consumption histogram,

which contrasts with the smooth consumption distributions observed in the data. To smooth

out the consumption distribution from the model, we approximate the consumption cumu-

lative distribution using the I-spline basis functions (Ramsay 1988), which are obtained by

integrating the normalized B-spline basis to ensure non-negativity and unit-integral.14 As

such, the I-spline basis functions are monotonically increasing and take values between 0 and

1, which are desirable properties for approximating cumulative distributions. The smoothed

density is simply the derivative of the smoothed cumulative distribution. See Appendix A

for details on the smoothing procedure.

Our MAR model contains five aggregate variables in Xt: output, inflation, real wage,

investment, and government debt.15 Since we are interested in the effect of transfer pol-

icy, we include the aggregate transfer as zt. The functional observation ft is the density of

14The normalized B-spline is also called M-spline.
15We choose those five variables because they serve as inputs of the directed acyclic graph representation

of our HANK, implying that dynamics of those variables are sufficient to summarize the propagation of all
endogenous variables in the model.
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Figure 1: Total Effect, Direct Effect, and Bfz (Left) and MPC (Right)
Note: The left panel shows the total effect dft{dεt (blue solid line), direct effect Fε (red dashed line), and

the compounded direct effect Bfz (orange dash dotted line) of the lump-sum transfer shock to the
consumption density. The right panel shows the relationship between consumption (x-axis) and MPC
(y-axis). For both panels, vertical line shows the average of individual consumption at the steady state.

cross-sectional consumption. These variables are simulated from the moving average repre-

sentation implied by the SSJ method. All variables are defined in terms of deviation from

their steady-state levels, as the MAR requires non-demeaned variables. The autoregressive

coefficient associated with the data generating process is computed using the autocovariance

of pXt, zt, ftq implied from the moving average representation.

4.3 Total Effect, Direct Effect, and Compounded Direct Effect

Before turning to the simulation exercises, we investigate how the consumption density re-

sponds to the lump-sum transfer shock. We first compute the total effect, direct effect, and

the compounded direct effect involving the MAR representation. The total effect dft
dεt

is the

at-impact impulse response of the consumption density. We compute the direct effect Fε from

the backward and forward iteration of household problems where we impose εt while letting

the sequence of other aggregate variables stay at the steady-state levels. The compounded

direct effect Bfz is computed following the definition in equation (7).

The left panel of Figure 1 shows the total effect dft
dεt

, direct effect Fε, and the compounded

direct effect Bfz. The vertical dotted line represents the cross-sectional mean of consumption

at the steady state. These three lines align very well, suggesting that general equilibrium

forces do not act significantly on the consumption density.

In response to the transfer, households with the lowest consumption increase their spend-
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Figure 2: Coefficients in Indirect Effects: pF0, F1, ¨ ¨ ¨ q

Note: This figure shows the coefficients associated with impulse response of Xt`k in the indirect effect,
namely pFhqhě0, for output, inflation, wage, government debt, and investment. We plot them for

h “ 0, 1, 4, 20, 40. The vertical dotted line shows the cross-sectional average of consumption at the steady
state.

ing. Their consumption changes from around 0.05 to around 0.2, generating a valley and

peak in the left-most side of the density. On the other hand, the households that consume

above the cross-sectional mean react little to the transfer, and thus we do not see significant

variation in the middle-to-right part of the figure. This pattern is consistent with the MPC

shown in the right panel of Figure 1. Although it exhibits some fluctuations, households con-

suming less than others are typically constrained by the borrowing limit and have a larger

MPC. The households with large MPCs are concentrated in the lower end of the consumption

distribution, to whom the transfer policy is the most effective.

4.4 Approximating Bfz

As discussed previously, our methodology involves approximating the compounded direct

effect Bfz by assuming the decaying structure of pF0, F1, ¨ ¨ ¨ q, namely Fh “ ρhF0 for ρ P p0, 1q.

We argue that this approximation procedure performs well in our HANK model.

Figure 2 shows Fh for five aggregate variables which will be included in the MAR (output,

inflation, wage, government debt and investment) for h “ 0, 1, 4, 20, 40. Note that Fh is the
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Table 1: Ratio of Fh and F0 at Cross-Sectional Average Consump-
tion at Steady State

h Output Inflation Wage Govt Debt Investment 0.9h

1 0.935 0.022 0.932 0.923 0.895 0.9
4 0.671 0.039 0.651 0.694 0.643 0.656
20 0.087 0.113 0.038 0.114 0.153 0.122
40 0.033 0.089 -0.008 0.059 0.075 0.015

Note: This table reports the ratio between Fh and F0 evaluated at the
average consumption in the steady state, for horizons h “ 1, 4, 20, 40.
It also shows the power 0.9h for comparison.

Fréchet derivative of consumption density with respect to Xt`h, meaning that Fh itself is

interpreted as a function with the same domain as the density. As expected, Fh shrinks

toward zero when the horizon k increases. Moreover, Fh monotonically decays over the

domain since they are vertically stretched versions of each other, supporting the approach

of multiplying a fixed constant to F0 to approximate Fh. An exception is inflation rate,

where F0 stands out while the other Fh values stay close to zero. One possible explanation is

that, real interest rate is (i) positively related to current inflation because a rise in inflation

increases nominal interest rate by the Taylor rule, while (ii) negatively related to one-period

ahead inflation because real interest rate is computed as the gap between nominal interest

rate and inflation expectations through the Fisher equation. Both forces are at work and

cancel out each other’s effects, except for current inflation ph “ 0q for which only the first

force is present. This creates the difference between Fh at horizon 0 and at other horizons

for inflation.

Table 7 takes a closer look at the ratio of Fh (h “ 1, 2, 20, 40) to F0 plotted in Figure 2

evaluated at the cross-sectional average of consumption at the steady state (vertical dashed

line in the Figure). Except for inflation, these values broadly match the power of 0.9. In Table

7 in Appendix E, we show that this pattern is robust for other choices of points. Overall,

these observations suggest that the approximation would work well if inflation rate is not a

dominant driver of the indirect effect to consumption density.

With the approximation scheme discussed previously, we compute B̃fz with different ρ.

The grid search over ρ shows that ρ “ 0.898 minimizes the approximation error in terms of

Frobenius norm in equation (16), and thus we treat ρ “ 0.9 as the baseline. We calculate B̃fz

for ρ “ 0.85, 0.95 as the robustness check. Figure 3 compares the true Bfz (blue solid line)

with its approximation B̃fz (orange dotted line). Although some approximation errors exist

for ρ “ 0.95, B̃fz aligns well with the true Bfz, showing that our approximation methodology
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Figure 3: Approximation of Bfz for ρ “ 0.85, 0.9, 0.95

Note: The figure plots the compounded direct effect Bfz (blue solid line) and its approximation B̃fz

(orange dotted line) for different assumptions on ρ “ 0.85, 0.9, 0.95. Vertical line shows the average
consumption at the steady state.

works well.

4.5 Simulation Exercises

We now simulate data from the model and apply our identification methodology to assess its

performance. We generate the observations from the moving average representation of the

model solution for T “ 1000. The choice of sample size is relatively large compared to actual

datasets (typically fewer than 200 observations for quarterly data). We aim to mitigate small-

sample issues in estimating the reduced-form model because the objective of this exercise is

to illustrate the identification methodology. The variance Γ “ 1
T

řT
t“1pft b ftq is computed

from the simulated sequence of pftq, and we apply functional principal component analysis to

obtain the FPC basis. We estimate the reduced form parameters, ppGq, pΣqq, by OLS. In the

simulation exercise, the reduced-form parameters are fixed at their OLS estimates. The error

bands shown below capture the uncertainty due solely to the identification methodology, and

do not reflect the uncertainty pertaining to estimation.16

As in Y. Chang et al. (2023), we select the number of basis functions m and lag order p

jointly to minimize the one step ahead out-of-sample forecast error in rolling-window estima-

tion with each window of size 60 using the reduced-form model with only pftq as observables.

This criterion suggests m “ 5 and p “ 1. These five FPC basis functions account for 99.1%

16In terms of the algorithm, we iterate Step (2-ii) of Algorithm 1 for J ` K times, and use the last K
draws to compute the results shown in the figures.
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of variation in pftq over time.17

4.5.1 Prior

As we fix ppGq, pΣqq at their OLS estimates
´

ypGq, xpΣq

¯

, we draw Q from the conditional

distribution of it given these reduced-form parameters.

p
´

Q | ypGq, xpΣq

¯

We discuss our prior choice for Q, which consists of prior for parameters in each block of

equations.

Prior on BXX, BXz, and pBXf q conditional on ppGq, pΣqq. Let Xij denote the pi, jq entry

of a matrix X. Note that for i “ 1, ¨ ¨ ¨ , k, it follows
řk

j“1pBXXq2i,j `pBXzq2i,1`
řm

j“1pBXf q2i,j “

pΣqi,i. Therefore, absolute values of all the parameters in the i-th equation are bounded by

pΣq0.5i,i .

As demonstrated earlier, we impose sign restrictions on BXX so that we provide a more

precise view on the approximated indirect effect. Table 2 provides the overview of the sign

restrictions. Again, since the goal here is not to give structural interpretation on those

aggregate shocks but to distinguish the aggregate and functional shocks, we impose the

parsimonious restrictions on them. A demand shock moves the output and inflation to the

same direction, while a supply shock moves them to the opposite direction. Wage, government

debt, and investment shocks raise the corresponding variables, and are assumed to be the

main contributors of the fluctuation of those variables. We require that, for example, the

contemporaneous response of wage to the wage shock is larger in absolute value than the

responses of it to any other shocks.

We do not impose any information on the size of the responses. Thus, the elements of

the i-th row in BXX , BXz, and pBXf q have the uniform prior over
“

´pΣq0.5i,i , pΣq0.5i,i

‰

if they are

not restricted, and over
“

´pΣq0.5i,i , 0
‰

or
“

0, pΣq0.5i,i

‰

if the sign restriction is imposed depending

on whether the parameters are negatively or positively constrained.

17We measure variation in pftq using the functional R-squared (FR2), defined as

FR2
m “

ř

t }Πmft}
2

ř

t }ft}2

where Πm is the projection from the original Hilbert space onto the space spanned by the m basis functions.
We find that only one basis function explains 80.4% of the variation.
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Table 2: Sign Restrictions on BXX

Shock Output Inflation Wage Govt Debt Investment
Demand Shock ` `

Supply Shock ´ `

Wage Shock ``

Govt Debt Shock ``

Investment Shock ``

Note: Sign restrictions imposed on BXX . The signs “`” and “´” indicates
that the element is restricted to be positive or negative, and “``” indicates
the combination of the positivity restriction and that the corresponding el-
ement has the largest absolute value than any other elements in the same
equation (i.e., the corresponding shock is the dominant contributor of the
variable). No restriction is imposed to the elements with blank entry.

Prior on Bzz, pBzf q, and AzX conditional on ppGq, pΣqq. Since the lump-sum transfer

shock in our model corresponds to 1% of steady state output, it is fair to guess Bzz “ 0.01Yss.

In reality, this guess can be computed from the knowledge of policy designs, such as the

amount of transfer for each household and how many households are included as targets for

the policy. We assume that Bzz follows a normal distribution with prior mean of 0.01Yss and

the prior standard deviation equal to one-tenth of the prior mean.

The prior for the elements of pBzf q is flat again by the same token as above. The prior

for entries of AzX corresponding to Xit (i “ 1, ¨ ¨ ¨ , kq is normal with mean zero and standard

deviation λ
pΣq0k`1,k`1.5

sdpXitq
where the denominator is the standard deviation of Xit and λ ą 0 is a

hyperparameter governing the tightness of the prior. This specification follows the standard

practice to determine the prior for regression models with non-standardized data. We set

λ “ 5, which is larger than the standard choice so that we apply only a little shrinkage for

this part.

Prior on pAfXq, pBfzq, and pBff q conditional on ppGq, pΣqq. We follow the same procedure

above to settle on the prior for pAfXq and pBff q. The prior for pBff q is flat. The prior for

elements of pAfXq corresponding to the coefficient of Xjt in the i-th equation (i “ k `

2, ¨ ¨ ¨ , k ` 1 ` m, j “ 1, ¨ ¨ ¨ , k) is normal with mean zero and standard deviation λ
Σ0.5

ii

stdpXjtq

where λ “ 5 again.

Conditional on pAfXq, we can compute ĆpBfzq, a guess for the distributional response to

the shock of interest pBfzq, from equations (15) and (16). In the baseline, ρ is fixed at 0.9.

We specify the prior for pBfzq to be the normal distribution with mean ĆpBfzq and standard
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Figure 4: Impulse Responses under ρ “ 0.9
Note: The bottom-right panel plots the at-impact impulse response of the density. The other panels show
the impulse response of aggregate quantities. The blue solid line shows the point-wise mean, along with the
68% interval represented by the shaded area. The orange dashed line shows the corresponding response

from the data generating process (i.e., the HANK model). The at-impact response of transfer is normalized
to be 0.01.

deviation equal to one-tenth of the prior mean.

4.5.2 Impulse Responses

Figure 4 shows the impulse response functions obtained by applying our identification method-

ology to the simulated data, where the transfer’s at-impact response is normalized to 0.01.

The blue solid lines represent the pointwise mean along with the 68% credible intervals

(shaded areas). As a baseline, we also plot the true impulse responses implied from the

HANK (orange dashed line). The bottom-right panel shows the density response at impact,

while the others plot the impulse response of aggregate variables over time. Note that the

x-axes differ between the bottom-right panel and others: The x-axis of the bottom-right

panel is the consumption level, while the ones for the others are horizons up to 20 quarters.

The bottom-right panel shows that our identification framework captures the overall

shape of the density response well, surrounded by the tight credible interval. We impose an

informative prior for the compounded direct effect pBfzq, while the density response shown
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Table 3: 68% Intervals of BXz (ˆ10´3)

Variable
Without Direct Effect Information With Direct Effect Information

(Uninformed Interval) (Informed Interval)
Output p´3.47, 3.47q p´0.58, 1.93q

Inflation p´2.04, 2.04q p´1.26, 1.61q

Wage p´3.24, 3.24q p´0.46, 1.58q

Govt Debt p´7.27, 7.27q p2.34, 5.83q

Investment p´0.20, 0.20q p´0.07, 0.05q

Note: This table compares 68% intervals of BXz corresponding to each variable in the
case where we do not incorporate the information on direct effects (left column), and
the case where we incorporate the information (right column). Every entry in the table
is scaled by 10´3.

here is the total effect, defined as the sum of direct and indirect effects. This result suggests

that we can tightly identify the total density response from the information on the direct

effect.

Turning to the aggregate variables, we find that the mean of the aggregate impulse re-

sponses aligns well with the baseline. Although the size of the wage response produced by

our methodology is larger than that by the baseline, our methodology recovers the overall

features of the baseline responses. Moreover, our identification methodology helps to shrink

the uncertainty in the responses relative to the prior. To see this more closely, Table 3

displays the 68% credible intervals of BXz for the case where we do not incorporate the in-

formation on the direct effect (henceforth, the uninformed interval), and the case where we

incorporate the information (the informed interval). All values are reported in units of 10´3

for exposition.18 For instance, the 68% informed interval of the output response ranges from

-0.58 to 1.93. This is a huge reduction in the uncertainty given that the uninformed interval

covers p´3.47, 3.47q. In other words, the length of the informed interval is 36% of that of

the uninformed interval. In addition, the informed interval places greater weight on positive

responses where the true response lies, contrary to the uninformed interval being symmet-

ric around zero. These observations illustrate the benefit of our identification strategy for

recovering the true responses.

18The former is derived from the prior of BXz discussed above. We use the same draws used to depict
Figure 4 to compute the latter.
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4.6 Robustness

We conduct several exercises with different specifications to see the robustness of our method-

ology. We overview the results of these exercises here. Appendix E contains figures and more

detailed discussions.

Additional Restrictions. As demonstrated above, our framework allows to reflect addi-

tional prior belief for responses of aggregate variables to the shock of interest. As an illustra-

tion, we restrict the at-impact responses of output and government debt (i.e., the entries of

BXz corresponding to output and government debt) to be positive. That is, we require that

output and government debt increases in response to the contemporaneous transfer shock.

Figure 15 plots the responses. The additional sign restrictions greatly shrinks the proba-

bility bands relative to the baseline. The impulse responses for output and government debt

are associated with much smaller uncertainties over the entire horizon. Interestingly, the

interval for the at-impact output response is strictly smaller than the one in Figure 4, i.e.,

the upper bound of the interval becomes close to the baseline, even though we restrict the

response to be positive. Moreover, uncertainties surrounding the responses of non-restricted

variables (inflation, wage, and investment) are also reduced. These observations suggest that

even agnostic sign restrictions contribute to improving the identification.

Choice of ρ. Figures 16 and 17 repeat the same exercises for alternative assumptions on ρ,

namely 0.85 and 0.95. They still capture the baseline well, while we find some discrepancies

(e.g., the inflation reacts negatively for ρ “ 0.85, and overreacts for ρ “ 0.95). This highlights

that the choice of ρ plays an important role in our exercise.

Joint Bayes Estimator. There is a criticism for using point-wise percentiles to summarize

uncertainty in impulse responses because they do not take into account dynamics of impulse

response functions (i.e., shape of responses) to derive the point estimator as well as the

credible intervals (e.g., Inoue and Kilian 2022). This is particularly the case for our exercise

because we are interested in the response of cross-sectional density, whose shape does matter

for interpretations. Figures 18 and 19 compare the joint posterior distribution under the

additive separable loss function with the baseline estimates. Except that the joint Bayes

estimator comes with the slightly wider credible interval, the point-wise posterior reported

above is very similar to the joint posterior.
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Figure 5: Impulse Responses to Targeted Transfer
Note: See the footnote attached to Figure 4. We set ρ “ 0.9.

Prior Strength. We weaken the prior of pBfzq and Bzz by setting the prior standard

deviation to be the absolute value of their prior mean multiplied by 0.5, instead of 0.1

above. Since those parameters are key for identification, we aim to see what happens if these

restrictions speak little compared to the baseline. The output from the estimation is shown

in Figure 20. Although the posterior mean is consistent with the previous estimation results

overall, they come with quite large uncertainties represented by the wide intervals. This

suggests that setting the informative prior for these parameters is crucial for identification.

4.7 Extension: Targeted Transfer

The scope for our methodology is not limited to lump-sum transfers. As long as the pol-

icy design ηp¨q and heterogeneous direct effects ϕp¨q are known, we can compute the direct

response of the density associated under an alternative intervention and use it as an input

for identification. As an extension, we consider the same economy but analyze the targeted
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transfer stimulus policy. Specifically, we change ηp¨q to be

ηpa, b, eq “

$

&

%

1
Ppeďēq

if e ď ē

0 otherwise

Households with productivity below the threshold ē receive the stimulus payment, while

others do not receive any transfers under this policy. This specification still yields
ş

ηp¨qdµss “

1, and thus the policy is normalized to the same scale as the lump-sum setting. The MPC

ϕp¨q remains identical because the household optimization problem, aside from the transfer

policy, remains unchanged. We assume that the bottom 21.2% of households ranked by the

productivity are eligible for the transfer stimulus (i.e., the threshold ē is set at the 21.2nd

percentile of the productivity distribution).

We compute the direct response Fε to the targeted transfer stimulus and apply our

methodology to see the propagation of the shock. Figure 5 shows the impulse responses

of the macroeconomic variables and the consumption density. Again, the orange dashed

line represents the true impulse response. The at-impact response of output is almost three

times larger than the response to the lump-sum transfer policy even though these two poli-

cies exhibit the same scale. The mechanism behind it is quite standard. The constrained

households typically face low productivity. They have a higher MPC than others, and thus

spend a large share of the stimulus payment immediately. The policy targeted toward the

low productivity households increases output more effectively.

The mean of impulse responses from our identification methodology is shown by the blue

solid line. It captures the truth well, with the 68% credible interval covering the baseline.

This result indicates that the proposed methodology performs well in the alternative setting.

5 Empirical Application: Stimulus Transfer

This section applies the methodology developed so far to investigate the dynamic propagation

of stimulus payments to households. We consider two policy scenarios, (i) lump-sum transfer

giving $100 per family member, and (ii) targeted transfer to households in the bottom 20

percent of the income distribution. After describing the dataset, we demonstrate how we

compute the household-level MPC. Then we turn to the estimation results.
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5.1 Data Description

The dataset consists of quarterly observations of aggregate variables and consumption densi-

ties from 1990Q1 to 2019Q4. See Appendix F for details on the construction of the variables.

In the baseline specification, we include output, inflation, Wu and Xia (2016) shadow Federal

Funds rate, Federal tax revenues, and Federal net transfer payments. Output, tax revenues,

and net transfer payments are detrended by the Congressional Budget Office (CBO) estimate

of potential output. In the MAR model (10), the net transfer payment is assumed to be di-

rectly affected by the shock of interest and thus labeled as zt, and the other four variables

are included in Xt.

We use the Consumer Expenditure Survey (CEX) collected by the Bureau of Labor Statis-

tics as a source for household consumption. CEX consists of quarterly interview surveys

meant to capture relatively large expenditure, and weekly diary surveys meant to capture

daily expenditure. We mainly use the interview survey because the data collected from the

diary survey is summed up across time and appears in the interview survey anyway. The

unit of observation is the consumer unit (CU), and CUs are asked about expenditure over

the last three months. CEX has a rotating panel structure: Each CU is interviewed for up to

five consecutive quarters, while the first interview is preliminary and not used for statistical

analysis. They are also asked about their characteristics, including family income over the

last 12 months in the first and fifth interview, and information on financial status in the fifth

interview.

Our measure for consumption expenditure is the CEX benchmark measure of total expen-

diture, net of personal insurance, pension, and social security payment. This consumption

measure covers food, alcoholic beverages, apparel, housing, transportation, health care, enter-

tainment, personal care, reading, education, tobacco, cash contribution, and miscellaneous.

Note that, since the survey is conducted every month and it asks about expenditure for the

past three months, reported expenditure does not necessarily align with calendar quarter. We

assign each observation to the quarter in which at least two of the reported months fall. For

example, observations in 2010Q1 include those who are interviewed in March 2010 (reported

expenditure covers December 2009, January 2010, and February 2010), April 2010 (covering

January 2010, February 2010, and March 2010), and May 2010 (covering February 2010,

March 2010, and April 2010).19 The expenditure measure is then annualized by multiplying

quarterly expenditure by four. We exclude the observations with negative expenditure.

We also use information on CU characteristics, such as annual pre-tax family income

19A similar treatment is made in M. Chang and Schorfheide (2024).
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and family structure. The consumption measure and income are deflated by the Consumer

Price Index. The consumption density for each quarter is estimated by the kernel density

estimation method with CU weights provided by the CEX. The expenditure in the CEX

is not seasonally adjusted. To remove seasonality, we first extract 20 FPCs and associated

loadings from the time-series of demeaned densities. Then, we apply the X-13 seasonally

adjustment for each loading. We finally combine the seasonally adjusted loadings with the

FPCs to obtain the seasonally adjusted series of densities.

5.2 Computing Household-Level MPC

It is not possible to estimate MPC for every quarter from CEX without further assumptions

or information. As MPC is defined as a change of consumption expenditure in response to

an unexpected change in income, we need to decompose income changes into unexpected and

expected components. This requires us to find a plausible micro identification strategy, or

to construct a structural model of consumption behavior in order to extract the unexpected

component. In addition, MPCs are heterogeneous across households, but further assumptions

are needed about how they relate to household characteristics. To the best of our knowledge,

there is no micro data for the joint distribution of consumption and MPC available for a long

time span for the United States.

We follow the “reported-preference” approach and leverage the survey evidence on self-

reported MPC to impute household-level MPC. Despite the caveat that self-reported re-

sponses might be different from actual household behavior, this approach elicits household

responses to unexpected income changes in a way that is consistent with economic theory.

Another advantage of such survey is in allowing us to relate MPC to various household

characteristics.

We take an imputation approach similar to that of Patterson (2023) and Bellifemine et

al. (2025), and use the survey evidence by Fuster et al. (2021). The survey was conducted

in March 2016, May 2016, January 2017, and March 2017 as an additional module of the

Survey of Consumer Expectations (SCE) operated by the Federal Reserve Bank of New York.

This survey asks respondents to consider various hypothetical scenarios involving unexpected

income changes, and asks how much they would adjust expenditures within a quarter. We

focus on the treatment of a $500 gain for respondents in March 2016 and a $500 loss in March

2017.20 We first relate the reported MPC to household characteristics, namely education,

20One of the main findings of Fuster et al. (2021) is that there is a substantial difference between the
MPCs with respect to income gain and income loss. Since our methodology is built on linearity, we take the
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race, sex, home ownership, working status, pre-tax household income, and age. Specifically,

we run the following regression twice: The first regression uses the observations getting the

gain treatment, and the second regression uses those getting the loss treatment.

MPCi “α `

3
ÿ

j“1

βeduc,j1 teduci “ ju `

3
ÿ

j“1

βrace,j1 tracei “ ju ` βfemale1 tfemalei “ 1u

` βrent1 trenti “ 1u `

2
ÿ

j“1

βws,j1 twsi “ ju `

10
ÿ

j“1

βincome,j1 tincomei “ ju

` βage,1agei ` βage,2age
2
i ` βage,3age

3
i ` ui, i “ 1, ¨ ¨ ¨ , n

(18)

where femalei equals one if the respondent is female and zero otherwise, renti equals one if

the respondent rents his/her residence and zero if he/she owns the residence, and agei is age

of the respondent. See footnote for definition of other variables.21 We then use the estimated

coefficient from regression (18) to impute MPC from income gain, {MPC
gain

i , and MPC from

income loss, {MPC
loss

i , respectively for the CEX observations.22 The imputed MPC is defined

as the simple average of {MPC
gain

i and {MPC
loss

i .

An important assumption for the imputation approach is that MPC depends only on

variables included in the regression (18). In particular, it is widely recognized that liquid

assets are one of the important components to explain MPC. The survey by Fuster et al.

(2021) do have contain questions about liquid asset holdings, and CEX asks CUs to report

their wealth at the fifth interview. However, it is known that asset information provided in

CEX is of low quality due primarily to a high non-response rate. Dropping CUs who do not

report their asset holdings may distort the results because such non-response might occur for

systematic reasons. Moreover, there was a significant change in the definition of liquid asset

in CEX. Until 2013Q1, the measure of liquid asset was typically constructed by summing

up balances in checking and savings accounts (e.g., Parker et al. 2013), while a new variable

simple average of the two MPCs. Allowing for such sign asymmetry requires incorporating a certain type of
nonlinearities in the framework, which is beyond the scope of this paper.

21We construct dummy variables based on the following definition of groups. Education: High school
diploma or lower/ Attended college but not BA (including people with associate degrees)/ BA/ Master’s
or higher. Race: White/ Black/ Asian/ Others. Working Status: Employed (Full-time or part-time)/
Unemployed/ Not in labor force. Pre-tax household income: Less than $10k/ $10k-20k/ $20k-30k/ $30k-
40k/ $40k-50k/ $50k-60k/ $60k-75k/ $75k-100k/ $100k-150k/ $150k-200k/ $200k or more. We drop dummies
for BA, White, Employed, and $60k-75k because these categories are used as the reference groups.

22As described in the main text, CEX asks about family income only in the first and fifth interview. Our
assumption is that households stay in the same income category as the one reported in the first interview for
the second, third, and fourth interview.
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Figure 6: Direct Effect to Consumption Density
Note: This figure shows the direct response of each policy shock to the consumption density. The x-axis is
the annualized consumption expenditure in $1,000. The dotted vertical line shows the mean (first moment)

computed from the temporal mean of the consumption densities.

representing liquid asset was added in 2013Q2, which covers values in money market accounts

and certificates of deposit in addition to bank balances. This discontinuity creates inconsis-

tencies in the imputation. For this reason, we do not use the financial information explicitly

and assume that financial status is captured by the variables included in the regression.

Another assumption is that the distribution of MPC is stable over time. Since we impose

linearity, the MPC function ϕp¨q in equation (6) should be the one at the steady-state and thus

should not be affected by aggregates. The predicted MPC from (18) should be interpreted

as the steady-state MPC, although estimated from observations in 2016 and 2017. Since the

interview waves are concentrated in the short period of time, it is not possible to investigate

the relationship between MPC and the business cycle. Patterson (2023) reports evidence

that the contribution of the unemployment rate to the MPC is small both economically and

statistically, favoring the view that MPCs do not exhibit substantial variation over time.
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5.3 Direct Effect to Consumption Density

We consider two types of policy interventions: lump-sum and income-targeted stimulus trans-

fers. For the lump-sum policy, the government allocates $100 per family member to CUs.

The income-targeted stimulus policy is designed as follows. For each quarter, we sort CUs

based on the family income divided by the square root of the number of family members,

a standard adjustment to account for economies of scale in family expenditures. Recipients

of the targeted stimulus are those in the bottom 20% of the population based on adjusted

family income, where the cutoff is determined by population shares rather than the number

of CUs. The selected CUs receive $500 per family member as the stimulus check. This design

ensures that those two policies are of the approximately identical aggregate scale.

The direct effect Fε is computed as follows. Let pcitqi be the collection of consumption

expenditures of CUs at time t. We then compute a hypothetical dataset. In the case of

lump-sum payments, each observation of the dataset is pcit ` 100 ˆ Nit ˆ {MPC itqi where

Nit is the number of family members in CU i and {MPCit is the imputed MPC based on

household characteristics at time t. We construct the hypothetical dataset for the targeted

policy analogously. We subtract the time average of densities associated with the original

dataset from the time average of densities associated with the hypothetical dataset. The

resulting difference is our measure for the direct effect on consumption density.

Figure 6 shows the direct effect computed as described above. The shape of the direct

effect resembles the one produced by the quantitative model (Figure 1). The lump-sum

transfer shifts the households at the lower-end of the distribution to the right, while it has

little effect on other households. Although the mean associated with the time-averaged

consumption density is located closer to the peak of the response compared to the model

counterpart, the similarity in shape indicates that our quantitative HANK model captures

household behavior well, supporting the discussion in the previous section. The direct effect

associated with the targeted policy is more concentrated on the low-consumption groups:

the density declines more strongly among low-consumption households and rises more steeply

just below the mean, reflecting a more concentrated shift in mass toward middle consumption

levels.

5.4 Settings

Below we discuss some choices we made concerning basis functions, prior, and algorithm.
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Table 4: Sign Restrictions on BXX (Empirics)

Shock Output Inflation Shadow Rate Tax
Demand Shock `˚ `˚

Supply Shock ´˚ `˚

Monetary Policy Shock ´ ´ `

Tax Shock ´ `

Note: Sign restrictions imposed on BXX . The signs “`” and “´”
indicates that the element is restricted to be positive or negative. We
impose additional assumptions that, for output and inflation, the sum
of squares of at-impact responses to the demand and supply shocks
are greater than the squares of responses to other shocks.

Choosing Lag Order and Number of Basis Functions. We continue to use the func-

tional principal component basis to reduce the dimensionality of the functional observations.

We again minimize the average of one-step ahead forecast errors from the rolling-window

estimations to select m and p jointly, which yields m “ 2 and p “ 2. However, as these two

basis functions explain only 84.6% of variation in pftq, we use m “ 4 in our analysis. This

increases the accountability up to 92.3%. The lag order of p “ 2 is still optimal under m “ 4.

Prior. Contrary to the simulation exercise where we fixed the reduced form parameters, we

also estimate them in the application. We specify the prior for pGq and pΣq to be the normal-

inverse-Wishart distribution. This is one of the typical distributional choices for reduced form

VAR models because, as the posterior associated with this type of prior is known analytically,

we can make draws without simulation. We parametrize the distribution by incorporating

the structure similar to the Minnesota prior where we heavily shrink coefficients associated

with higher order lags. See Appendix F for further details.

We follow the same approach as in the simulation exercises to settle on the prior for

other structural parameters. The prior mean for Bzz, the parameter governing the scale of

the policy, is set as follows. For each period, we multiply $100 with the total population to

estimate the total budget spent on the transfer policy, and divide it by the CBO nominal

potential output. We set the prior mean of Bzz to be the time-average of it.

The prior distribution for BXX is again uniform combined with sign restrictions to dis-

tinguish aggregate shocks and functional shocks. We present the sign restrictions on BXX

in Table 4. We require that the demand shock changes output and inflation to the same

direction and supply shock changes them to the opposite direction. The positive monetary

policy shock decreases output and inflation. The tax shock is assumed to be contractionary.

38



We further impose that demand and supply shocks in sum are primary drivers for output and

inflation by assuming that the sum of squares of at-impact responses to those two shocks are

larger than squares of at-impact responses to any other shocks. We impose this assumption

to mitigate concerns for the “shock masquerading problem” (Wolf 2020). We specify the

prior for BXz to be uniform, implying that we do not inform any beliefs on how aggregate

variables respond to the transfer shock.

We choose ρ, the shrinkage parameter for indirect effects, by the following procedure.

Fixing the reduced parameters at the posterior mean, we conduct a preliminary estimation

under ρ “ 0.9. We then find ρ which minimizes the approximation error in (???) for the

joint Bayes estimator from this preliminary estimation, and use the resulting ρ in the actual

estimation. This procedure selects ρ “ 0.86 under the lump-sum transfer, and ρ “ 0.81 under

the targeted transfer. Unlike the simulation exercise where we used the true direct effect, the

direct effect Fε is based on the estimated MPCs. To account for additional uncertainty owing

to the estimation, we multiply the absolute value of pĄBfzq with 0.25 to determine the prior

standard deviation of pBfzq conditional on pAfzq, instead of 0.1 in the simulation exercise.

5.5 Impulse Responses

Figure 7 plots the impulse responses to a positive lump-sum transfer shock (the first and

second rows) and a positive targeted transfer shock (the third and fourth rows) where the

at-impact response of aggregate transfer is normalized to be 0.01 relative to potential output.

Overall, the responses of aggregate variables are almost muted, although they are associated

with wide credible bands. The finding that the cash transfers are not effective tools to

stimulate output is consistent with the evidence discussed by Ramey (2025). The shock

generates the persistent increase in transfer payments, but little changes to tax revenues,

which suggests that the stimulus policy is mostly deficit-financed.

The at-impact responses of the consumption density imply that these policies cause up-

ward shifts in the consumption at the left end of the distribution. To see the effect of the

stimulus transfer policies to the consumption inequality more closely, Figure 8 plots the im-

pulse responses of Gini coefficient, and 10th, 50th, and 90th percentiles. The red markers at

horizon zero show the changes in these statistics due only to the direct effect, which can be

computed from Figure 6. Both policies increases the 10th and 50th percentiles persistently,

but has little effects on the 90th percentile. This leads to the reduction in the consump-

tion inequality represented by the Gini coefficient. The targeted transfer is more effective at

reducing the inequality.
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Figure 7: Impulse Responses to a Lump-Sum Transfer Shock (First and Second Rows) and
to a Targeted Transfer Shock (Third and Fourth Rows)
Note: The bottom-right panel plots the at-impact impulse response of the density. The other panels show
the impulse response of aggregate quantities. The blue solid line shows the point-wise median, along with
the 68% credible interval represented by the shaded area. The at-impact response of transfer is normalized

to be 0.01.
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Figure 8: Impulse Responses of Summary Statistics of Consumption Distribution to a Lump-
Sum Transfer Shock (First and Second Rows) and to a Targeted Transfer Shock (Third and
Fourth Rows)
Note: The blue solid line shows the point-wise mean, along with the 68% credible interval represented by
the shaded area. The red markers at horizon zero show the change in these statistics due only to the direct

effect. The at-impact response of transfer is normalized to be 0.01.
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Relative to the direct effects plotted by the read markers, the at-impact total effects

are greater in magnitude for the Gini coefficient as well as 10th and 50th percentiles for

both policies. This observation suggests that the indirect effect pushes down the inequality

further, and highlights the importance of general equilibrium mechanism in evaluating the

distributional consequence of aggregate shocks.

5.5.1 Robustness

discuss robustness

6 Conclusion

This paper develops a novel identification methodology leveraging heterogeneous direct ef-

fects. We show how these direct effects can be incorporated in an autoregressive model

featuring both aggregate and functional observations. The proposed methodology performs

well in the quantitative HANK model. We apply the method to investigate the macroeco-

nomic and distributional effects of stimulus payment policies, and compare the lump-sum

and targeted stimulus payments.

Although we presented the framework mainly in the context of stimulus transfer policies,

this methodology has a broader range of applications. For example, the direct effects of

trade shocks to firms’ sales and employment depend on the firms’ characteristics such as

productivity (e.g., Aghion et al. 2024). Our identification scheme allows us to evaluate

the consequence of trade in terms of aggregate quantities and the distribution of firms. Our

methodology can be applicable to examples other than the stimulus transfer and trade shocks.

These alternative applications are left for future research.
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A Details on HANK

We construct a medium-scale HANK model as a laboratory for simulation analysis. Time is

discrete and all agents form rational expectations.

A.1 Household

There are infinitely lived households indexed by i P r0, 1s who consume ci,t and supply labor

ht. The labor supply is determined by the labor union and is the same for all households.

The log of idiosyncratic productivity e follows an AR(1) process:

log e1
“ ρe log e ` σeε

e

and e is normalized so that Epeq “ 1. The household can save in liquid asset b and illiquid

asset a. They can adjust the illiquid asset with i.i.d. probability p. As a liquidity premium,

the households pay ω per one unit of liquid assets. The Bellman equation is characterized as

V h
t p1, a, b, eq “max

c,a1,b1

"

c1´γ

1 ´ γ
´ φ

h1`ν

1 ` ν

`β
“

pEtV
h
t`1p1, a1, b1, e1

q ` p1 ´ pqEtV
h
t`1p0, a

1, b1, e1
q
‰(

V h
t p0, a, b, eq “ max

c,b1

"

c1´γ

1 ´ γ
´ φ

h1`ν

1 ` ν

`β
“

pEtV
h
t`1p1, p1 ` rp,tqa, b

1, e1
q ` p1 ´ pqEtV

h
t`1p0, p1 ` rp,tqa, b

1, e1
q
‰(

subject to

c ` a1
` b1

“ p1 ` rp,tqa ` p1 ` rp,t ´ ωqb ` p1 ´ τ yt qytpeq
1´ξ

`
`

1 ´ τΠ
˘

Πtpeq ` ηpa, b, eqσtrεtrt

ytpeq “ wthtΓtpeq

a1
ě 0, b1

ě 0

If the first input in the value function is 1, the household is allowed to adjust its illiquid

asset. Otherwise, it keeps the same level of illiquid asset holding. The household receives the

gross return from asset holdings, the post-tax labor income p1´τ yqy1´ξ and dividend income

p1 ´ τDqΠ, and receives transfer payment ηp¨qσtrεtrt . The government imposes progressive

tax to the pre-tax labor income ytpeq. The specification follows Heathcote et al. (2017), and

is known to be a good approximation of the progressive tax system in the US. The curvature

parameter ξ governs the progressivity, and, given ξ, time-varying τ yt governs the aggregate
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scale of labor taxation.

The contribution of idiosyncratic productivity e to the pre-tax income ytpeq is controlled

by the incidence function Γtpeq (Alves et al., 2020). The incidence function is specified as

Γtpeq “

e
´

wtNt

wssNss

¯γypeq

ş

e1

´

wtNt

wssNss

¯γype1q

Ppde1q

where P is the probability measure for e. Following Iao and Selvakumar (2024), γypeq is set to

be BetapFepeq;αy, 1q, the probability density of the Beta distribution with parameters αy and

1 evaluated at the cumulative probability of P at e, written as Fepeq. This function governs the

sensitivity of cross-sectional income to fluctuation of aggregate labor income. When αy ă 1

(αy ą 1), the sensitivity to aggregate income is higher for low (high) productivity household,

implying that the standard deviation of individual income is countercyclical (procyclical).

We are interested in the propagation of transfer shock εtrt through direct and indirect

effects. The standard deviation σtr governs the size of policy. Each household receives a

type-specific fraction ηp¨q of the total transfer. It becomes the lump-sum transfer if ηtp¨q “ η

does not depend on individual characteristics. Negative η represents the lump-sum tax. Since

the population size is normalized to be one, we let η “ 1.

A.2 Firms

A.2.1 Final Good Producer

A final good producer combines the intermediate goods produced by a continuum of firms

j P r0, 1s via the CES technology with elasticity parameter ηp.

Yt “

ˆ
ż 1

0

y
ηp´1

ηp

jt dj

˙

ηp
ηp´1

Under the perfect competition, the profit maximization problem gives the demand function

for intermediate goods.

yjt “

ˆ

pjt
Pt

˙´ηp

Yt (19)

where Pt “

´

ş

p
1´ηp
jt dj

¯
1

1´ηp
.
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A.2.2 Intermediate Good Producers

The intermediate good firm j produces intermediate goods used as inputs for the final good.

As inputs, they use labor services bought from the labor union and their own capital. The

production function is specified to be Cobb-Douglas.

yjt “ ZtK
α
jt´1N

1´α
jt (20)

where Zt is the exogenously given total factor productivity (TFP) common across firms. They

face the monopolistic competition, and choose price of their own goods given the demand

functions. The Rotemberg (1982) type price adjustment cost is introduced to model price

rigidity. The optimization problem firm j solves is

maxE0

#

8
ÿ

t“0

βt

˜

pjt
Pt

Yjt ´ WtNjt ´ rktKj,t´1 ´
ηp
2κp

log

ˆ

pjt
pjt´1

˙2

Yjt

¸+

subject to demand function (19) and technology (20). The equilibrium is symmetric. Aggre-

gation of the first order condition implies the price Phillips curve.

log p1 ` πtq “ κp

ˆ

mct ´
ηp ´ 1

ηp

˙

` βEt log p1 ` πt`1q ` vpt

where mct is the real marginal cost, πt “ Pt{Pt´1 ´ 1 is the aggregate inflation rate, and vpt

is the price markup shock.

A.2.3 Capital Good Producer

A capital good producer owns capital which is rented to intermediate good producers with

price rkt . To make investment of an amount It, the producer has to pay 1`S
´

It`1

It

¯

It where

Spxq “
χ
2
px ´ 1q2 is the investment adjustment cost. The maximization problem of the firm

is given as

maxE0

#

8
ÿ

t“0

˜

t
ź

s“0

1

1 ` rs´1

¸

„

rktKt ´ It

ˆ

1 ` S

ˆ

It
It´1

˙˙ȷ

+

subject to the law of motion for capital.

Kt`1 “ p1 ´ δqKt ` It
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The first order condition for investment implies

1 ` S

ˆ

It`1

It

˙

`
It`1

It
S 1

ˆ

It`1

It

˙

“ Qt ` Et

«

1

1 ` rt`1

ˆ

It`2

It`1

˙2

S 1

ˆ

It`2

It`1

˙

ff

where Qt is characterized as

Qt “ Et

„

1

1 ` rt`1

`

rKt`2 ` p1 ´ δqQt`1

˘

ȷ

The profit of the firm is characterized as

ΠK
t “ rKt Kt ´ It

ˆ

1 ` S

ˆ

It
It´1

˙˙

A.2.4 Mutual Fund

A mutual fund combines the stocks and government debt and sell the asset to the household.

Define the aggregate profit to be the sum of profits from retailing firms and capital good

producing firms.

Πt “ ΠR
t ` ΠK

t “ Yt ´ wtNt ´
ηp
2κp

plog p1 ` πtqq
2 Yt ´ It

ˆ

1 ` S

ˆ

It
It´1

˙˙

,

the price of aggregate stock pt whose quantity is normalized to be 1 is determined recursively

as

pt “
Et

“

pt`1 ` p1 ´ τDqΠt`1

‰

1 ` rt

A.2.5 Labor Union

A continuum of labor unions determines wage and labor supply under the monopolistic

competition. All members in the union is subject to the same level of wage and labor supply.

The labor supply chosen by each union k P r0, 1s is aggregated via

Nt “

ˆ
ż 1

0

N
ηw´1
ηw

k,t

˙

ηw
ηw´1

which gives the demand Nk,t “

´

wk,t

wt

¯´ηw
Nt. The objective of the unions is to maximize the

utility of a hypothetical individual whose consumption and labor supply are equal to their
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average. The optimization problem can be formulated as

max

#

8
ÿ

t“0

˜

t
ź

s“0

1

1 ` rs´1

¸ «

C´γ
t p1 ´ τ yt qwk,tNk,t ´ φN ν

k,tNk,t ´
εw
2κw

log

ˆ

wk,t

wk,t´1

p1 ` πtq

˙2
ff+

subject to

Nk,t “

ˆ

wk,t

wt

˙´ηw

Nt

This optimization problem leads to the standard wage Phillips curve.

logp1 ` πw
t q “ κw

ˆ

φN ν
t ´

ηw ´ 1

ηw
p1 ´ τ yt qwtC

´σ
t

˙

Nt `
1

1 ` rt
Et

“

logp1 ` πw
t`1q

‰

` vwt

where πw
t “

wt´wt´1

wt´1
is the wage inflation rate and vwt is the exogenous wage markup shock.

A.3 Policy

The government collects labor tax, dividend tax, and type-specific tax to operate exogenous

government spending and pay back government debt. The government budget constraint is

given by

Bg
t`1 ` Tt “ p1 ` rtqB

g
t ` Gt

where Bg
t is real government debt outstanding and Tt is the total tax defined as the sum of

labor, dividend, and type-specific tax revenues.

Tt “

„

WtNt ´

ż

p1 ´ τ yt qytpeq
1´ξµtpdadj, da, db, deq

ȷ

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

TL
t

`τΠΠt `

ż

ηpa, b, eqµtpdadj, da, db, deq

where µt is the measure of household state variables padj, a, b, eq at time t. We assume that

the average tax rate to labor income TL
t depends on the fluctuation of output and debt

outstanding.

TL
t

wtNt

“ ρτ
TL
t´1

wt´1Nt´1

` p1 ´ ρτ q

ˆ

ϕw pwtNt ´ wssNssq ` ϕB

ˆ

Bg
t´1

Yt´1

´
Bg

ss

Yss

˙˙

The tax scale parameter τ yt is adjusted so that the average labor tax rate is equal to the one

determined by the aforementioned tax rule.
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The nominal interest rate it follows the Taylor rule with the smoothing term:

it “ ρmpit´1 ` p1 ´ ρmpq prss ` ϕπtq ` vit

where vit is the exogenous component in the nominal interest rate. The nominal and real

interest rates are linked via the Fisher equation.

1 ` rt “
1 ` it

1 ` Etπt`1

A.4 Shocks and Market Clearing Conditions

The exogenous variables in the model are TFP Zt, government spending Gt, price markup

vpt , wage markup vwt , monetary policy surprise vit. Assume that they follow AR(1) processes.

logZt`1 “ p1 ´ ρZq logZss ` ρZ logZt ` σZε
Z
t

Gt “ p1 ´ ρGqGss ` ρGGt´1 ` σGε
G
t

vpt “ ρpv
p
t´1 ` σpε

p
t

vwt “ ρwv
w
t´1 ` σwε

w
t

vit “ ρiv
i
t´1 ` σiε

i
t

There are six standard aggregate shocks: TFP εZt , government spending εGt , price markup

εpt , wage markup εwt , monetary policy εit, and transfer εtrt .

Let atpadj, a, b, eq, btpadj, a, b, eq, and ctpadj, a, b, eq be the policy functions. The asset

market clearing condition is

ż

atpadj, a, b, eqdµt `

ż

btpadj, a, b, eqdµt “ Bt ` pt

Given that labor, capital, and asset markets clear, the final good market also has to clear by

the Walras’s law.

Yt “

ż

ctpadj, a, b, eqdµt ` It ` Gt `
ηp
2κp

plog p1 ` πtqq
2 Yt ` ω

ż

btpadj, a, b, eqdµt

A.5 Calibration

Tables 5 and 6 list the calibrated parameters. The parameter values are fairly standard over-

all. Discount factor is calibrated so that asset market clears at the steady state. Aggregate
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Parameter Definition Value Detail
γ inv elasticity of intertemp substitution 1.0 Standard
ν inv Frisch elasticity 1.0 Standard
φ labor disutility 0.5611 N “ 1
β discount factor 0.9865 Asset mkt clearing
p prob for adjusting illiquid asset 0.062 Bayer et al. (2024)
ρe persistency of log e 0.966 Standard
σe std of shock to log e 0.92 Standard
αy incidence 0.078 Iao and Selvakumar (2024)
ω liquidity premium 0.01 4% annually
Zss s.s. TFP 0.4843 Y “ 1
Kss s.s. capital 9.0 K{Y “ 9.0
α capital share 0.33 Standard
δ depreciation 0.02 Standard
ηp elasticity of substitution in goods 7.0 s.s. price markup = 1.17
ηw elasticity of substitution in labor 7.0 s.s. wage markup = 1.17
κp slope of price Phillips curve 0.121 Iao and Selvakumar (2024)
κw slope of wage Phillips curve 0.165 Iao and Selvakumar (2024)
χ investment adjustment cost 9.639 Auclert et al. (2020)
Bg

ss s.s. government debt 2.8 Bg{Y “ 2.8
Gss s.s. government spending 0.2 G{Y “ 0.2
τD dividend tax rate 0.2 US tax system
ξ tax progressivity 0.181 Heathcote et al. (2017)
ϕb sensitivity of tax to debt 0.05 Standard
ϕw sensitivity of tax to labor income 0.0 —
ρmp interest rate smoothing 0.875 Standard
ρτ tax rate smoothing 0.9 Standard
ϕπ Taylor rule coeff to inflation rate 1.5 Standard

Table 5: Calibration Part 1
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Parameter Definition Value
ρZ persistency of TFP shock 0.373
σZ std of TFP shock 0.00509
ρi persistency of monetary policy shock 0.373
σi std of monetary policy shock 0.000706
ρG persistency of government spending shock 0.429
σG std of government spending shock 0.00259
ρp persistency of price markup shock 0.205
σp std of price markup shock 0.00201
ρw persistency of wage markup shock 0.197
σw std of wage markup shock 0.00201

Table 6: Calibration Part 2

labor supply and output at the steady state are normalized to be one. One period corre-

sponds to a quarter, and thus the steady state capital and government debt correspond to

225% and 70% per annual output. The incidence parameter αy being less than one implies

that poorer households are more sensitive to changes in aggregate labor income. The shock

processes listed in Table 6 are from Iao and Selvakumar (2024) who estimate a medium-scale

HANK model with both macro and micro data.

A.6 Smoothing Consumption Distribution

The smoothing procedure with the I-spline proceeds as follows. The internal knot points

are chosen evenly based on the percentile of the steady state consumption distribution. For

example, if we need 4 internal knot points, they are chosen to be 20, 40, 60, and 80 percentiles

of the steady state consumption distribution. Those knot points give the set of I-spline basis

functions, which are used to approximate the cumulative distribution of consumption. The

coefficients of basis functions are restricted to be non-negative, and thus we apply the non-

negative least squares to find the best-fitted coefficients. We firstly perform this smoothing

for the consumption distribution at the steady state. The smoothed steady state consump-

tion density is computed simply by differentiating the smoothed consumption cumulative

distribution.

The backward and forward iteration following the SSJ step gives the sequence of cumu-

lative consumption distributions following an aggregate shock. For each horizon, we smooth

the distribution by the I-spline and compute the consumption density. The impulse response

of density is simply the difference between the density at each horizon and the consumption
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density at the steady state. This will be used to simulate the time-series for consumption

densities.

In a nutshell, the flowchart for our simulation is as follows.

(1) The SSJ method gives the impulse response of aggregate variables Xt with respect to

each shock. We write them as pdXj
0 , dX

j
1 , ¨ ¨ ¨ , dXj

T q where j is the index for shock.

(2) For each j, using pXss ` dXj
0 , Xss ` dXj

1 , ¨ ¨ ¨ , Xss ` dXj
T q as inputs, we run a backward

and forward iteration to obtain the sequence of cumulative distributions of consumption

at each horizon 0, ¨ ¨ ¨ , T .

(3) For each j, the cumulative distributions obtained above are smoothed by the I-spline.

Differentiating the smoothed cumulative distributions gives the smoothed densities, and

impulse response of the density is given by the difference between the density obtained

in this way and the steady state consumption density, written as pdf j
0 , df

j
1 , ¨ ¨ ¨ , djT q.

(4) We can formulate the moving average process from the impulse response pdXj
t , df

j
t qj,t.

The time series of aggregates as well as consumption density is simulated from the

moving average representation.
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A.7 Impulse Responses

Figure 9: Impulse Response to Transfer Shock
Note: The figure plots the impulse responses with respect to the transfer shock. The right-bottom panel

shows the density total response at-impact. Other panels show the impulse responses of aggregate variables
(output, inflation rate, wage, government debt, and investment) over time.

Figure 10: Impulse Response to TFP Shock
Note: The figure plots the impulse responses with respect to the TFP shock. See the note of Figure 14 for

detailed description.
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Figure 11: Impulse Response to Government Spending Shock
Note: The figure plots the impulse responses with respect to the government spending shock. See the note

of Figure 14 for detailed description.

Figure 12: Impulse Response to Monetary Policy Shock
Note: The figure plots the impulse responses with respect to the monetary policy shock. See the note of

Figure 14 for detailed description.
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Figure 13: Impulse Response to Price Markup Shock
Note: The figure plots the impulse responses with respect to the price markup shock. See the note of

Figure 14 for detailed description.

Figure 14: Impulse Response to Wage Markup Shock
Note: The figure plots the impulse responses with respect to the wage markup shock. See the note of

Figure 14 for detailed description.
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B Bayesian Algorithm

This section introduces a new Bayesian algorithm to estimate structural vector autoregressive

models. Although the focus of this paper is entirely on MAR models, the discussion in

this section is general enough to accommodate the usual VAR models with only aggregate

variables.

Consider an n-variate structural VAR model given by

AYt “ C1Yt´1 ` ¨ ¨ ¨ ` CpYt´p ` Bεt

where εt „ Np0, Inq is independent over time. The history of observations is denoted as

Y “ pY0, Y1, ¨ ¨ ¨ , YT q. An n ˆ n matrix A shows the contemporaneous relationship between

variables, and another n ˆ n matrix B represents the effects of structural shocks for each

equation. Defining Gl :“ A´1Cl (l “ 1, ¨ ¨ ¨ , p) and H :“ A´1B, it can be written in a

canonical form of structural VAR.

Yt “ G1Yt´1 ` ¨ ¨ ¨ ` GpYt´p ` Hεt

The reduced-form error is represented by ut “ Hεt „ Np0,Σq where Σ “ HH 1. As is well

known, structural parametersH (or pA,Bq) are not identified without additional assumptions

because, for any orthogonal matrix Q, we can write ut “ Hεt “ pHQqpQ1εtq. That is, at-

impact structural response of the form HQ for an orthogonal matrix Q is observationally

equivalent to H. We (partially) identify the structural parameters by placing prior on Q so

that at least one of the elements in εt can be economically interpretable.

This framework is general enough to accommodate most structural VAR models. They

include the “B-type” where A is set to identity while every element in B is estimated (e.g.,

Uhlig, 2005), and the “A-type” where the diagonal (off-diagonal) elements of A (B) are set to

one (zero) and we estimate off-diagonal elements of A as well as diagonal elements of B (e.g.,

Baumeister and Hamilton, 2015). Most notably, we can consider more general “AB-type”,

which is the type of restriction belonging to neither A-type nor B-type.23 It is clear that our

23For example, Blanchard and Perotti (2002) study the effect of government spending and tax to output.
The included variables are Yt “ rτt, gt, yts where τt is tax rate, gt is government spending, and yt is output.
The structural parameters are defined as

A “

»

–

1 0 a13
0 1 a23
a31 a32 1

fi

fl , B “

»

–

1 b12 0
b21 1 0
0 0 1

fi

fl
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structural MAR model also exhibits the AB-type parametrization. Before we describe the

algorithm, we discuss how the prior distribution can be formulated.

B.1 Prior

Assume that pA,Bq are written as functions of Σ and Q, so that A “ ApΣ, Qq and B “

BpΣ, Qq. We are interested in the posterior distribution of pG,Σ, Qq. We represent the prior

for the parameters as

ppG,Σ, Qq “ ppQ | G,ΣqppG,Σq

The second term gives the prior for the reduced-form parameters pG,Σq. We can use the

prior standard in the literature, such as normal-inverse-Wishart distribution. The first term

gives the prior for rotation Q given the reduced-form parameters pG,Σq. We represent this

prior in terms of pA,Bq.

ppQ | G,Σq91tQ P Opnqup pApΣ, Qq, BpΣ, Qq | G,Σq

We specify the prior as the probability distribution of A and B, possibly conditional on

pG,Σq. This formulation is consistent with how we build up the prior for our MAR model.

Importantly, ppQ | G,Σq can be defined in other ways so that a researcher can reflect

the prior information for other objects of interest. For example, if the researcher has prior

knowledge on how the impulse response up to horizon h looks like, we can formulate ppQ |

G,Σq as

ppQ | G,Σq91tQ P Opnqup pIRF0pQ,Σq, IRF1pQ,G,Σq, ¨ ¨ ¨ , IRFhpQ,G,Σq | G,Σq

where IRFkp¨q is the impulse response function at horizon k “ 0, ¨ ¨ ¨ , h. Note that G is not

used as an input for IRF0p¨q because it is a function of only Q and Σ. Also, the forecast

error variance decomposition is a function of pQ,G,Σq, which can be reflected as prior if one

wishes to.

and place the restrictions (i) a23 “ 0 (government spending is not affected by output contemporaneously),
(ii) a13 “ ´2.08 (based on extraneous evidence on tax elasticity to output), and (iii) either b12 “ 0 or
b21 “ 0 (tax policy occurs ahead of government spending or the opposite). Imposing these three restrictions,
the VAR is exactly identified. They compute the remaining structural parameters under these assumptions.
This structure is of AB-type because A is not identity and we estimate off-diagonal elements of B.
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The prior implies the posterior of the form

ppG,Σ, Q | Y q “ ppQ | G,Σ, Y qppG,Σ | Y q

Note that, the conditional posterior of Q in the first term is proportional to its own prior.

ppQ | G,Σ, Y q9 ppY | G,Σ, Qq
looooooomooooooon

“ppY |G,Σq

ppQ | G,Σq9ppQ | G,Σq

where the first transformation is due to the Bayes formula, and the second transformation

follows because the likelihood does not depend onQ once we condition on pG,Σq. This implies

that Q is not updated by the data given reduced-form parameters, and thus prior plays the

sole role for structural identification. Also, given that ppG,Σq belongs to the well known

families of distribution, such as the normal-inverse-Wishart, it is quite easy to make draws

from ppG,Σ | Y q since analytical expression for the posterior is available. These observations

validate the Bayesian algorithm below.

B.2 Algorithm

We draw parameters from the posterior distribution by the following algorithm. This com-

bines the widely known algorithm for reduced-form VAR (step 1) with the Metropolis Hast-

ings sampler for structural parameters (step 2).

Algorithm 1 (Posterior Sampler to draw pGi,Σi, Qiqi“1,¨¨¨ ,I).

(1) Draw the reduced-form parameters pGi,Σiqi“1,¨¨¨ ,I from the posterior ppG,Σ | Y q. If the

prior for pG,Σq belongs to the well-known families of distributions (such as Normal-

inverse-Wishart), this step can be done by the existing algorithm for the reduced-form

VAR. See, for example, Koop and Korobilis (2010) and Kilian and Lütkepohl (2017).

(2) Run the following steps for i “ 1, ¨ ¨ ¨ , I to draw an orthogonal matrix Q from

ppQ | Gi,Σi, Y q9ppQ | Gi,Σiq91tQ P Opnqup pApΣi, Qq, BpΣi, Qq | Gi,Σiq .

(i) Choose an initial value Q0.

(ii) Iterate the following steps for j “ 1, ¨ ¨ ¨ , J ` 1 times. Let Qi :“ QJ`1 as a draw

from the desired distribution.
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(a) Make a proposal Qp. Let

S “ exp pcpX ´ X 1
qq

where X is a n ˆ n random matrix following standard matrix normal distri-

bution, c is a scalar tuning parameter which should be adjusted to get the

desired MH acceptance rate, and expp¨q is the operator for matrix exponential.

Define Qp be

Qp “

$

&

%

Qj´1S with probability α

Qj´1RS with probability 1 ´ α
(21)

where α P p0, 1q is a tuning parameter and R “ diagp´1, 1, ¨ ¨ ¨ , 1q is n ˆ n.

(b) Let

q “
p pA pΣi, Qpq , BpΣi, Qpq | Gi,Σiq

ppA pΣi, Qj´1q, BpΣi, Qj´1q | Gi,Σiq

With probability mint1, qu, we accept the candidate: Qj “ Qp. Otherwise,

we reject the candidate: Qj “ Qj´1.

Using the proposal (21) is the important departure from the literature where the proposal

distribution is typically the uniform distribution on the Haar measure. The proposal (21)

has some desirable properties. First, Qp is orthogonal given Q0 being orthogonal.

Proposition 1. Let Q0 be a n-dimensional orthogonal matrix and X be a n ˆ n matrix.

For any scalar c, Qp :“ Q0S “ Q0 exppcpX ´ X 1qq is orthogonal. Also, for a n ˆ n matrix

R “ diagp´1, 1, ¨ ¨ ¨ , 1q, Qp :“ Q0RS is orthogonal.

Proof. Note that cpX ´ X 1q is skewed symmetric: pcpX ´ X 1qq1 “ ´cpX ´ X 1q. This yields

SS 1 “ exppcpX ´ X 1q ` pcpX ´ X 1qq1q “ exppOq “ I. Also, RSS 1R1 “ I.

Thus, this proposal scheme generates a new matrix Qp by giving a perturbation to the

original orthogonal matrix Q0 while ensuring Qp to be orthogonal. The one close to Q0

are more likely to be picked up as the candidate because S is concentrated at the identity

matrix for small c. The rejection rate of the Metropolis-Hastings step is controlled by a scale

parameter c (around 25–40% as a rule of thumb).24 The lower c implies larger weights to the

candidates close to Q0. This feature is important: When we make a draw from the uniform

24In the practical estimation, we make an online adaptation to c. For j-th iteration, we use cj defined
recursively as logpcjq “ logpcj´1q ` γjpaj´1 ´ 0.25q, where γj “ 1

jρ with ρ P p0.5, 1s and aj´1 takes one if we
accept the candidate at step j ´ 1 and zero otherwise.

62



distribution over Haar measure, the algorithm investigates the region where ppAp¨q, Bp¨q | ¨q

is low and the candidate is quite unlikely to be accepted, which makes the sampler inefficient.

We improve the efficiency by making matrices located in the neighborhood of the original

matrix drawn more likely than others.

Second, it is a symmetric proposal.

Proposition 2. Let Q0 be a n-dimensional orthogonal matrix and X be a n ˆ n random

matrix following the matrix standard normal. For any scalar c, the proposal (21) is symmet-

ric.

Proof. Let K :“ X ´ X 1. Then, diagonal elements of K is zero and off-diagonal elements

follow i.i.d. Np0, 2q. Thus, K has the same distribution as ´K. The skewed symmetry of

cK implies S´1 “ expp´cKq. Since K “d ´K, we have S “d S´1.

The proposal kernel relative to Haar measure is written as

qpQp|Q0q “ αq1pQp|Q0q ` p1 ´ αqq2pQp|Q0q

where the first (second) term reflects the proposal scheme in the first (second) line of (21).

We have

q1pQp|Q0q “ pSpQ´1
0 Qpq “ pSpQ´1

p Q0q “ q1pQ0|Qpq

which follows from pSpsq “ pSps´1q as S “d S´1. Hence we have q1pQp|Q0q “ q1pQ0|Qpq. We

also have

q2pQp|Q0q “ pSpR´1Q´1
0 Qpq “ pSpQ´1

p Q0Rq “ pSpQ´1
p Q0R

´1
q

“ pSpR´1Q´1
p Q0q “ q2pQ0|Qpq

which follows from Lemma 1. Then we have qpQp|Q0q “ qpQ0|Qpq.

This leads our algorithm to the random walk Metropolis Hastings, meaning that we do

not have to evaluate the ratio of qpQp|Q0q and qpQ0|Qpq. Indeed, those densities are difficult

to evaluate since the density of S “ exppcpX ´ X 1qq is non-standard. Symmetry of the

proposal helps us to circumvent this issue.

Third, the proposal is able to visit entire space of orthogonal matrices. Suppose that α “ 1

and the rotation R is not applied at any time. Then, the sign of determinants of proposal Qp

does not change. If we start from Q0 with detQ0 “ 1 (detQ0 “ ´1), the algorithm searches

over the space of orthogonal matrices with positive (negative) determinant, but those with

negative (positive) determinant are never investigated. The purpose of mixture α is to let
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the algorithm flip the sign of determinant with a certain probability 1 ´ α and search over

the entire space of orthogonal matrices.

B.3 Comparisons to Other Algorithms

Relative to other algorithms in the literature, this algorithm has several advantages. First,

this framework accommodates various form of prior for structural parameters. The estimation

algorithm in Baumeister and Hamilton (2015) focuses on the A-type models, where B is

assumed to be diagonal and they impose prior on A as well as diagonal elements on B. On

the other hand, Bruns and Piffer (2023) restricts A to be identity and place prior on the

at-impact response B, i.e., they are interested in the B-type models.25 Our algorithm allows

the models where structural parameters appear both in A and B like our MAR model. Even

more generally, identification restrictions can be imposed on other structural parameters of

interest, such as dynamic impulse responses as well as forecast error variance decomposition.

This generality distinguishes the proposed algorithm than others in the literature.26

Second, this algorithm works well when we introduce informative prior on Q. One of the

standard ways to make a draw of Q conditional on (G,Σ) is based on the importance sampler:

(i) Generating many Q’s from the proposal (typically the uniform distribution with respect

to the Haar measure), (ii) assigning weights to them based on the value of the density, and

(iii) picking one of them based on the weights (e.g., Bruns and Piffer 2023; Arias et al. 2018).

However, if the informative prior is involved, it is typical that the uniform proposal does not

perform well. That is, the proposal makes draws from the area with low density ppQ | G,Σq

as likely as other areas, leading the effective sample size being quite small compared to

the number of drawn Q’s. The proposed Metropolis-Hastings type algorithm sequentially

updates the proposal distribution by referring to the previous draw, and thus we can draw

Q from the area with high density more effectively. This feature is particularly important in

our MAR framework because it restricts pBfzq by making the prior standard deviation of it

relatively small.

25Bruns and Piffer (2023) mentions that the choice of types “depends on whether the identifying restrictions
introduced by the researcher are more naturally expressed on the contemporaneous relation among variables
or on the contemporaneous effects of the shocks” (p.1224). Their methodology might be applicable to the
other types with some extensions. That being said, the discussion after that point is devoted sorely to the
B-type specification.

26The idea of imposing prior to dynamics of impulse responses is usually discussed in moving average
models (Barnichon and Matthes 2018; Plagborg-Møller 2019) or Bayesian local projections (Ferreira et al.
2025). The novelty here is to show that this is indeed possible in the VAR setting as well.
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B.4 Auxiliary Lemma

Lemma 1. Let S “ exppcpX ´ X 1qq where c ą 0 and X is a n ˆ n random matrix following

matrix standard normal. For any n ˆ n orthogonal matrix P and n ˆ n orthogonal matrix s

such that det s “ 1, we have

pSpsq “ pSpPsP 1
q

where pS is the density for S with respect to Haar measure.

Proof. Let K “ X ´ X 1. We can write

vecpPXP 1
q “ pP b P qvecpXq “

d vecpXq

as vecpXq „ Np0, In2q and P bP is a n2 ˆn2 orthogonal matrix. It follows that PXP 1 “d X

and hence PKP 1 “d K. Thus we obtain

PSP 1
“ P exppcKqP 1

“ P

˜

ÿ

j

1

j!
pcKq

j

¸

P 1

“
ÿ

j

1

j!
pPcKP 1

q
j

“ exppcPKP 1
q “

d exppcKq “ S

where the second equality follows from the power series expansion exppXq “
ř

j
1
j!
Xj, and

the third equality is due to pPcKP 1qj “ pPcKP 1qpPcKP 1q ¨ ¨ ¨ pPcKP 1q “ P pcKqjP 1 as P is

orthogonal. This is what we desire.
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C An Overview of Mixed Autoregression

We provide a high-level overview of the functional principal component approach to estimate

mixed autoregressive (MAR) models. Interested readers are encouraged to refer to Y. Chang

et al. (2024b) and Y. Chang et al. (2025) for complete discussion.

C.1 Notation

LetH be a separable Hilbert space of square integrable functions equipped with inner product

xf, gy “
ş

fprqgprqdr (f, g P H). Let LpHq be a space of linear operators on H. The tensor

product in H, f b g, is defined as the operator satisfying pf b gqh “ xh, gyf where h P H.

The tensor product is analogous to the outer product in the finite dimensional Euclidean

space.

The space Rk ‘ H is also Hilbert space with inner product

xpx, fq, py, gqy “ x1y ` xf, gy (22)

where x, y P Rk and f, g P H. The tensor product on Rk ‘ H is defined as an operator

satisfying

ppx, fq b py, gqq pw, hq “ xpw, hq b py, gqypx, fq “ pw1y ` xh, gyq px, fq

for any w P Rk and h P H. When H “ Rℓ, we have f b g “ fg1 and x b y “ xy1, and the

tensor product defined above becomes identical to the sum of outer products of two sets of

vectors.

C.2 Mixed Autoregression

Consider a mixed autoregressive model with first-order lag: a MAR(1) model.

«

Xt

ft

ff

loomoon

Yt

“ G

«

Xt´1

ft´1

ff

loooomoooon

Yt´1

`Hεt (23)

where Xt P Rk, ft P H, and G,H P LpRk ‘ Hq are an autoregressive operator and an

operator for at-impact impulse response, respectively. The shock εt has mean Epεtq “ 0 and

variance-covariance operator Epεs b εtq “ 1ts “ tuI. The reduced form variance is defined
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as Σ “ HH 1 where H 1 is the adjoint of H. The extension to models with general lag order

is trivial. The MAR model (23) is infinite-dimensional and thus cannot be estimated per se.

We discuss (i) how to derive the finite-dimensional approximation of the MAR and (ii) how

we choose the basis necessary for approximation.

C.2.1 Deriving Finite-Dimensional Representation

Suppose that Rk ‘ H is spanned by an orthonormal basis pviqiě1. Then, each element of

Rk ‘ H can be expressed as

Y “

8
ÿ

i“1

xvi, Y yvi, Y P Rk
‘ H

To reduce the dimensionality, we take a subspace Rk ‘V Ă Rk ‘H where Rk ‘V is spanned

by a subset of basis pviq
k`m
i“1 where m is a finite integer governing the approximation precision.

Then, Y is approximated as

Y “ ΠY ` p1 ´ ΠqY « ΠY :“
k`m
ÿ

i“1

xvi, Y yvi

where Π is a projection on a subspace Rk ‘ V of Rk ‘ H and p1 ´ Πq is an operator for the

projection residual satisfying p1 ´ ΠqY “ Y ´ ΠY . The idea of approximating functions by

focusing on sub-basis consisting of several prominent elements is quite common in functional

data analysis, and indeed adopted by many works on functional autoregressive models.27

Using the projection, the MAR model is approximated as

Yt “ GpΠYt´1 ` p1 ´ ΠqYt´1q ` Hεt « GΠYt´1 ` Hεt (24)

Y. Chang et al. (2024b) show that Gp1 ´ ΠqYt´1 gets negligible asymptotically if we let

m Ñ 8 as T Ñ 8 with an appropriate rate. We left-multiply Π to the approximated FAR

to have

ΠYt « pΠGΠqpΠYt´1q ` pΠHΠqpΠεtq (25)

27One of the important exceptions is M. Chang et al. (2024). To derive finite-dimensional expression of the
density for micro data, they firstly span the space of log-densities by sets of cubic polynomials. Then, they
convert the approximated log-densities back to the (non-log) densities, and choose the density maximizing
the likelihood for micro observations, which is the optimization problem with respect to the coefficients of
the cubic polynomials.
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which is a finite-dimensional representation of the MAR.

We define a pk ` mq-dimensional vector pY q as

pY q “ πpY q :“

»

—

—

–

xv1, Y y

...

xvm, Y y

fi

ffi

ffi

fl

where π is a mapping from Rk ‘ H to Rk ‘ Rm. Once π is restricted on Rk ‘ V , it is a

one-to-one mapping between Rk ‘ V and Rk ‘ Rm where the inverse mapping is defined as

π´1
ppY qq “ ΠY

We also define a pk ` mq ˆ pk ` mq matrix pAq as

pAq “ πpAq :“

»

—

—

–

xv1, Av1y ¨ ¨ ¨ xv1, Avmy

...
. . .

...

xvm, Av1y ¨ ¨ ¨ xvm, Avmy

fi

ffi

ffi

fl

where, with an abuse of notation, π is a mapping from LpRk ‘ Hq to Rpk`mqˆpk`mq. We can

see that π restricted on LpRk ‘Vq is one-to-one between LpRk ‘Vq and Rpk`mqˆpk`mq where

the inverse mapping is defined as

π´1
ppAqq “ ΠAΠ

Indeed, it is easy to show that those two π’s are isometries in the sense that they preserve

norms. That is, for any Y P Rk ‘ V ,

}pY q}2 “

k`m
ÿ

i“1

xvi, Y y
2

“ }Y }
2

where } ¨ } is the Euclidean norm for pY q and the norm implied by (22) for Y respectively,

and for any Hilbert-Schmidt operator A defined on Rk ‘ V ,

|||pAq|||2 “ trppAq1pAqq “ trpA1Aq “ |||A|||
2

where ||| ¨ ||| is the Frobenius norm for pAq and the Hilbert-Schmidt norm for A.
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Using these π’s, we can represent the approximated FAR (25) as

pYtq « pGqpYt´1q ` pHqputq (26)

which is a pk ` mq-dimensional VAR. The isometry plays an important role in relating the

estimator from (26) with the parameters on the Hilbert space. Indeed, Y. Chang et al.

(2024b) show that the estimators

Ĝ :“ π´1
´

ypGq

¯

, Σ̂ :“ π´1
´

xpΣq

¯

,

where
´

ypGq, xpΣq

¯

are the least-square estimator for ppGq, pΣqq from (26), are consistent for G

and Σ under some regularity conditions.

C.3 Choice of Basis

The discussion so far is applicable for any orthonormal basis spanning Rk ‘ H. In practice,

however, the performance of our estimator relies heavily on the choice of basis. A good basis

represents the fluctuation of functional observations with as small number of leading basis

functions as possible, which improves efficiency of the estimators. Although there are well-

known bases used to approximate functions,28 they typically require at least more than 10

functions for preferable approximation precision. We introduce the data-driven methodology

to compute basis: the functional principal component analysis.

We assume that the sample mean of pYtq
T
t“1 is zero:

1
T

řT
t“1 Yt “ 0. It comes without loss

of generality since we can simply use the demeaned observations. We let

Γ “
1

T

T
ÿ

t“1

pft b ftq

be the sample variance-covariance operator for pftq, and define puFPC
i , λFPC

i qiě1 be the col-

lection of pairs of eigenfunction and eigenvalue with λFPC
1 ě λFPC

2 ¨ ¨ ¨ ě 0. We call puFPC
i qmi“1

the functional principal component (FPC) basis.

The FPC basis has certain optimality properties: Take an arbitrary orthonormal basis

puiqiě1 of H. Let VFPC be a subspace spanned by puFPC
i qmi“1, and V be a subspace spanned

28They include orthonormalized polynomials, histogram (i.e., splitting the domain of functions and taking
local mean for each sub-domain), Fourier series, and Chebyshev polynomials.

69



by puiq
m
i“1. We can show that, for any m,

T
ÿ

t“1

}ΠFPCft} ě

T
ÿ

t“1

}Πft}

where ΠFPC and Π are projections of H on VFPC and V respectively. This implies that, when

the number of basis functions m is fixed, the FPC basis explains the temporal variation of

pftq better than any other basis. Moreover, we have

T
ÿ

t“1

`

ΠFPCft b
`

1 ´ ΠFPC
˘

ft
˘

“ 0

This shows that the approximation error p1 ´ ΠFPCqft is orthogonal to ΠFPCft in equation

(24), suggesting that our estimation is free from the omitted variable bias problem. These

properties validate using the FPC basis as a baseline for our exercises.

The benchmark basis used for MAR, pv˚
i q

k`m
i“1 is set as follows.

v˚
i “

$

&

%

pei, 0q i “ 1, ¨ ¨ ¨ , k

p0, uFPC
i´k q i “ k ` 1, ¨ ¨ ¨ , k ` m

where ei P Rk are a vector of zeros except the i-th element being one. This choice incorporates

the aggregate variables Xt itself as the first to k-th elements, and the inner product of ft and

FPCs (i.e., functional principal component loadings) as the pk`1q-th to pk`mq-th elements

in the approximate MAR (25).

C.4 Taking Constraints for Densities into Account

One of the concerns to apply the FPC analysis to densities is that one might fail to enforce

the unit-integral and non-negativity constraints. Our analysis takes into account the integral

constraint because we use the temporally demeaned functional observations all of which are

integrated to zero by construction. On the other hand, the non-negativity constraint is not

reflected in the FPC analysis.

Petersen and Müller (2016) propose to convert the densities by the log quantile den-

sity (LQD) transformation and apply the FPC analysis to the converted densities.29 The

29This methodology is adopted by F. Huber et al. (2024) in the macroeconomic context to approximate
the densities of labor earnings.
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converted densities are free from these constraints, and thus applying the FPC analysis to

them comes without any technical problems. Also, the LQD transformation is invertible,

meaning that we can recover the approximated density just by applying the inverse of LQD

transformation.

We nevertheless apply the FPC analysis to the original (non-transformed) densities. The

approach by Petersen and Müller (2016) find the FPC to the transformed functions, which

means that we find the basis approximating the transformed functions well. Because of the

non-linearity of the LQD transformation, it does not necessarily imply the good approxi-

mation performance for the original densities which are our main objects of interest.30 Our

approximation approach is built on the isometry of π’s for which the linearity of transforma-

tion plays a crucial role. It is theoretically very challenging to analyze the consequence of

such non-linear transformation to approximation quality.

30The methodology by M. Chang et al. (2024) faces the similar problem. As discussed in Footnote 27,
their basis functions span the space of log-densities and apply the nonlinear transformation to convert them
back to the non-log densities.
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D Proofs

Proposition 3. If BXX is invertible and both BzXB
´1
XX and BfXH

´1
XX are bounded, there is

a one-to-one mapping between pA,Bq and H.

Proof. The proof is constructive. Computing H from pA,Bq is straightforward. We describe

how to compute pA,Bq from H. Let

H “

»

—

–

HXX HXz HXf

HzX Hzz Hzf

HfX Hfz Hff

fi

ffi

fl

“

«

H11 H12

H21 H22

ff

We define the similar partition for A and B as well. We decompose H to get

H “

«

I 0

A21 I

ff

looooomooooon

A´1

«

B11 B12

0 B22

ff

looooooomooooooon

B

where B11 “ H11, B12 “ H12, A21 “ H21B
´1
11 , and B22 “ H22 ´ A21B12. Given that A21 is

bounded, we can write

A “

«

I 0

´A21 I

ff

This constructs the pair pA,Bq as desired.
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E Supplementary Figures and Tables for Section 4

E.1 Ratio Fh{F0 Evaluated at Different Points

Table 7: Ratio of Fh and F0 at Percentiles

h Output Inflation Wage Govt Debt Investment 0.9h

Panel A: 5th Percentile
1 0.966 -0.165 0.968 0.877 0.898 0.9
4 0.792 -0.057 0.796 0.479 0.615 0.656
20 0.084 0.097 0.043 0.046 0.100 0.122
40 0.025 0.076 -0.011 0.024 0.045 0.015

Panel B: 16th Percentile
1 0.935 -0.237 0.936 0.789 0.868 0.9
4 0.541 -0.061 0.533 0.420 0.605 0.656
20 0.076 0.114 0.059 0.007 0.116 0.122
40 0.016 0.093 0.000 0.010 0.031 0.015

Panel C: 50th Percentile
1 0.986 0.096 0.987 0.911 0.865 0.9
4 0.624 0.120 0.611 0.564 0.564 0.656
20 0.055 0.184 0.027 0.003 0.104 0.122
40 0.017 0.141 -0.007 0.043 0.029 0.015

Panel D: 84th Percentile
1 0.974 0.037 0.975 0.906 0.871 0.9
4 0.644 0.067 0.626 0.603 0.577 0.656
20 0.055 0.157 0.013 0.023 0.105 0.122
40 0.021 0.121 -0.014 0.040 0.042 0.015

Panel E: 95th Percentile
1 0.884 0.065 0.877 0.942 0.904 0.9
4 0.664 0.064 0.647 0.751 0.670 0.656
20 0.109 0.113 0.073 0.179 0.187 0.122
40 0.028 0.102 -0.003 0.075 0.098 0.015

Note: This table reports the ratio between Fh and F0 evaluated at 5th,
16th, 50th, 84th, and 95th percentiles of the steady state consumption
distribution for horizons h “ 1, 4, 20, 40. It also shows the power 0.9h

for comparison.
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E.2 More Results

E.2.1 Sign Restrictions on Output and Debt Responses

Figure 15: Impulse Responses with Sign Restrictions
Note: See the footnote attached to Figure 4. ρ is set to be 0.9.

E.2.2 Changing ρ

Figure 16: Impulse Responses under ρ “ 0.85
Note: See the footnote attached to Figure 4. ρ is set to be 0.85.
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Figure 17: Impulse Responses under ρ “ 0.95
Note: See the footnote attached to Figure 4. ρ is set to be 0.95.

E.2.3 Joint Bayes Estimator

Figure 18: Joint Bayes Estimator
Note: The blue solid line shows the joint Bayes estimator under the absolute additive separable loss

function. The gray lines show the 68% credible sets associated with the joint Bayes estimator. The black
dashed line shows the point-wise mean along with the point-wise 68% credible intervals with black dotted

lines.
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Figure 19: Joint Bayes Estimator for At-Impact Density Response
Note: The blue solid line shows the joint Bayes estimator under the absolute additive separable loss

function. The gray lines show the 68% credible sets associated with the joint Bayes estimator. The black
dashed line shows the point-wise mean along with the point-wise 68% credible intervals with black dotted

lines.

E.2.4 Weaker Prior on rBfzs

Figure 20: Weaker Prior on rBfzs

Note: See the footnote attached to Figure 4. We set ρ “ 0.9.
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F Supplementary Discussion for Section 5

F.1 Data Construction

All the macro variables except the Wu and Xia (2016) shadow rate are constructed from the

FRED. Real output corresponds to the FRED mnemonic GDPC1. Inflation rate is the log

difference of GDP deflator from one year ago (GDPDEF). Real Federal net transfer payment is

computed as the difference between nominal current transfer payments (W014RC1Q027SBEA)

and nominal current transfer receipts (W011RC1Q027SBEA) deflated by the GDP deflator.

Real federal tax revenue is computed as the sum of current tax receipts (W006RC1Q027SBEA)

and contributions for government social insurance (W780RC1Q027SBEA) deflated by the GDP

deflator. Real output, net transfer payment, and tax revenue are divided by the CBO estimate

of real potential output (GDPPOT). The shadow rate is taken from the website of the Federal

Reserve Bank of Atlanta.31

The measure for micro consumption expenditure is constructed by subtracting personal

insurance and pension (sum of CEX variables perinscq and perinspq) and retirement, pen-

sions, social securities (sum of retpencq and retpenpq) from total expenditures (sum of

totexpcq and totexppq). It covers food, alcoholic beverages, apparel, housing, transporta-

tion, health care, entertainment, personal care, reading, education, tobacco, cash contribu-

tion, and miscellaneous expenditures.

The CEX started to report the imputed pre-tax income in 2004Q1 to correct for non-

responses as well as responses of zero income. In addition, the raw pre-tax income is not

available for 2004 and 2005. As a measure for family income, we use the imputed income

from 2004Q1 (fincbtxm). Prior to 2004, we impute the pre-tax income by replicating the

BLS procedure as closely as possible, following Coibion et al. (2017).

F.2 Prior for Reduced Form Parameters

We omit p¨q for exposition. Let G “ rG1 G2 ¨ ¨ ¨ Gps. We set the prior of reduced form

parameters pG,Σq to be normal-inverse-Wishart:

ppG,Σq “ ppG | ΣqppΣq

31https://www.atlantafed.org/cqer/research/wu-xia-shadow-federal-funds-rate
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where

vecpGq | Σ „ Npg0, kronpΣ, Vgqq

Σ „ IW pτ, S0q

where kronpΣ, Vgq is the Kronecker product between Σ and Vg.
32 The parameters associated

with the distributions are chosen following Chan (2019). The conditional prior of vecpGq

given Σ is based on the idea of Minnesota prior. The mean is zero except for diagonal

elements of G1, which are one. The variance Vg is diagonal, whose element corresponding to

ℓ-th lag of variable j is given as ϕ2

ℓ2s2jj
where s2jj is the pj, jq element in the OLS estimate of

Σ. That is, we impose stronger shrinkage for coefficients with respect to distant lags. We set

ϕ “ 0.2.

We choose degrees of freedom τ to be 10. The scale parameter S0 is chosen so that EpΣq

is equal to the OLS estimate of Σ.

32We do not use b to denote the Kronecker product intentionally in order to avoid confusion with the
tensor product on the Hilbert space.
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