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Abstract

This paper proposes regime-switching state spacemodelswith feedback from lagged
continuous state variables to regime formation. Regime transition probabilities
implied from such a regime rule can be incorporated into the Kalman filter with
regime-switching coefficients. It is shown that the truncation step introduced in the
filter to circumvent the path dependence problem has an asymptotically negligible
impact on the resulting log likelihood. Consistency of the maximized likelihood
estimator can be established as well. Two simulation exercises confirm the finite
sample performance of the filter. I then study the monetary-fiscal policy mix using
the regime-switching DSGE model with the proposed regime determination rule to
archive a better forecasting performance especially around the time when a regime
change is likely.
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Surging inflation and rising demands on governments have brought a pivotal moment for
economic policy. (“Regime change; The world economy”, The Economist, October 8 2022)

1. Introduction

Since the seminal work by Hamilton (1989), regime-switching models are widely used
in macroeconomic and financial applications as a convenient way to capture discrete
changes in the economic environment. In particular, the regime-switching structure is
combined with state spacemodels to study unobserved factors and regimes jointly. This
framework enables us to estimate the regime-switching dynamic stochastic general
equilibrium (DSGE) models, which are used to investigate the monetary/fiscal policy
mix, the financial friction, and the economic uncertainty to name a few.

One of the important drawbacks of the traditional regime-switching model is in
time-invariant regime transition probabilities. In other words, probabilities of moving
from one regime to another are assumed to be fixed constants. However, a regime
shift itself might be an endogenous event influenced by other economic indicators. For
example, central banks employ a lot of economists to monitor economic conditions
and policymakers decide their policy stance based on reports by those economists. If
this is the case, ignoring such a source of information by assuming constant transition
probabilities would lead econometricians to misspecify the model.

The primary objective of this paper is to propose a way to model regime-switching
allowing for feedback from economic conditions to regime determination. I present two
asymptotic properties of this class of models, preciseness of approximated likelihood
and consistency of the maximum likelihood estimator. The simulation exercises verify
that the proposed model works well in finite samples. Finally, I apply this model to the
DSGE model with the monetary/fiscal policy mix.

Mymodel builds on theusual linear-Gaussian state spacemodelwith regime-switching
coefficients. Instead of the typical time-invariant Markovian assumption on the regime
transition, I specify the threshold-type regime rule which produces time-varying tran-
sition probabilities. More specifically, the regime rule consists of the constant term
governing the tendency of being in one regime compared to another at the steady state,
the linear combination of the lagged continuous state variables, and the randomvariable
independent of fundamentals. The second component represents the feedback channel
from economic conditions to regime formation, while I interpret the third component
as the forces driving regime shifts for reasons which are not modeled explicitly, such as
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the political environment and “sentiments”.
The likelihood of these regime-switching state space models can be computed by

the extended Kalman filter. The algorithm is based on the usual Kalman filter with
regime-switching coefficients except for one additional step: computing the transition
probabilities for each period. I show that the transition probabilities conditional on the
history of observations are functions of updated mean and variance of the continuous
state variables. Under the assumption of the Gaussian distributed error in the regime de-
termination rule, the transition probabilities can be written using the bivariate normal
cumulative distribution function. Due to this property, we can evaluate the likelihood
fast enough to estimate the model in a reasonable amount of time.

It is well known that we need to introduce the approximation into the regime-
switching Kalman filter. This is because the exact likelihood evaluation is subject to
the path-dependence problem: We need to keep track of the entire history of regimes
which grows exponentially with the sample length. The common trick employed in
the literature, which is adopted in my filter as well, is to truncate the history of the
regimes to follow. We keep track of the most recent r periods instead of the entire
history and introduce the collapsing step to integrate out the regime r + 1 period ago.
The first econometric result confirms that this approximation works well asymptotically.
More precisely, I show that the absolute difference between the approximated and
exact log-likelihood converges in probability to zero if the truncation order r grows
with the sample length. The speed of convergence is exponential with r. Intuitively,
since the contribution of more distant past information becomes smaller, wemay safely
ignore the regime realization older than the threshold r. We will see that the order of
convergence depends on the VAR(1) coefficient in the transition equation in the state
space model. As the system becomes more persistent, we have to keep track of the
longer history of regimes to ensure convergence.

The second set of results discusses the consistency of the exact maximum likelihood
estimator. I establish this claim for regime transition probabilitiesmore general than the
ones proposed in this paper. As long as transition probabilities have the property similar
to the irreducibility in the usual Markov process context in addition to being continuous
with respect to the parameters, the maximum likelihood estimator is shown to be
consistent. These two requirements are satisfied by not only the transition probabilities
implied by my regime rule but also those introduced by other preceding works.

To evaluate the finite sample performance, two Monte Carlo simulation exercises
are conducted. The first simulation design is the model with a scalar unobserved state
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variable and a scalar observation. Since the exact likelihood cannot be calculated compu-
tationally, I use the relatively large truncation order, r = 10, as the baseline. Comparing
the log-likelihood from this baseline and from smaller r, we see the difference between
the two is reasonably small evenwith r = 1 and shrinks aswe increase r. Consistent with
the theoretical investigation, the less persistent system delivers a smaller difference.
The computational burden grows exponentially as r gets larger, and the filter with r = 10

needs a long enough time to prohibit us from using this case in the estimation. The
second laboratory is the state space representation derived from the regime-switching
small-scale DSGE model. The purpose of this exercise is to investigate the role of trun-
cation in a more realistic model. I confirm that the likelihood with a small r gives us a
good approximation in this case as well.

As an empirical illustration, the proposed regime determination rule is applied to
the DSGE model with the monetary/fiscal policy mix by Bianchi and Ilut (2017). There
are two possible policy regimes: the active monetary/ passive fiscal (AM/PF) policies
and the passive monetary/ active fiscal (PM/AF) policies. They differ in the mechanism
of how inflation is determined and how the transversality condition is satisfied. Several
key variables related to the monetary and fiscal policies—output, potential output,
inflation, nominal interest rate, and debt-to-output ratio—are allowed to affect the
policy regime determination. The model is solved allowing the agents to take into
account the possibility of regime shifts, and the resulting state space representation is
fed into the regime-switching Kalman filter developed above.

Estimating the parameters using the sequential Monte Carlo method, I find the
regime probabilities and impulse response functions similar to Bianchi and Ilut (2017).
I find feedback from some macroeconomc variables to regime determination. For
instance, a higher debt-to-GDP ratio and higher inflation make the AM/PF regime more
likely to happen. This observation is interpretable from the optimal policy perspective:
An increase in the debt level under the PM/AF regime raises the inflation rate at impact.
Since aggregate welfare is a decreasing function of the deviation of the inflation rate
from its target, the (consolidated) government has the incentive to take the AM/PF
regime in order to stabilize inflation. Also, tax rate and interest rate are associated with
the AM/PF regime, which is also consistent with the observation that the AM/PF regime
is associated with contractionary monetary and fiscal policies.

Unlike the traditional exogenous regime switching model where regime transition
probabilities are kept constant over time, this framework features endogenous and
time-varying transition probabilities. This feature is useful especially in the context of
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forecasting. Using the same DSGE model, I show that we can predict regime changes
by keeping track of transition probability. Also, by taking time-varying probabilities of
regime changes into account, the baseline model offers better forecasts of GDP growth
and inflation than the exogenous switching model, at the time when a regime change is
likely to happen.

This paper contributes to two strands of the literature: the asymptotic properties
of regime-switching models in general and the structural macroeconomic models
incorporating endogenous regime-switching framework. Douc et al. (2004) provide the
asymptotic properties for hidden Markov models with discrete state variables, whose
results are extended byKasahara and Shimotsu (2019). The generalization of their claims
to the case with time-varying transition probabilities is done by Li and Liu (2023) and
Pouzo et al. (2022). Since all of these papers do not consider continuous state variables,
their framework cannot be applied to state space models. As an extension to the models
with continuous state variables, Douc and Moulines (2012) show the consistency of
the maximum likelihood estimator with the time-invariant transition kernel. Using
the framework by Douc and Moulines (2012), Li (2023) examines the linear-Gaussian
state space model with time-invariant regime transition probabilities. However, none
of these works consider the models with non-discrete state variables whose transition
kernel is time-varying.

There are a couple of works investigating regime-switching state space models in
particular, especially focusing on the collapsing step in the Kalman filter. The regime
truncation is introduced by Kim (1994) to avoid the computational issue related to
path dependence. Kim and Kang (2019) examine the preciseness of the Kim filter by
conducting simulation exercises. They compare the likelihood computed from the Kim
filter with the one from the particle filter, the latter of which is expected to be closer to
the exact likelihood, and numerically show that those two produce similar outcomes.
Theoretically, Li (2023) proves the asymptotic negligibility of the difference between
the exact and truncated log-likelihood. This paper can be regarded as a generalization
of those two papers to the models with endogenous regime-switching.

There is an accumulation of literature employing regime-switching DSGE models
to study discrete changes in the economic environment, including Liu et al. (2011),
Bianchi (2012), Nimark (2014), Bianchi and Melosi (2017), Bianchi et al. (2018), and
Aruoba et al. (2018)1. Recognizing the limitation of the regime-switching framework
with time-invariant transition probabilities, several works deviate from this assumption

1See Hamilton (2016) for a survey of the literature.
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and formulate endogenous regime shifts. Ascari et al. (2022) study the state space
model in which the equation representing the long-run Phillips curve has a kink at
the threshold of the trend inflation rate. Chang et al. (2021) incorporate the threshold-
type regime-switching model proposed by Chang et al. (2017) into the small-scale New
Keynesian model to examine the monetary policy stance in the postwar U.S. Section
2 provides a further discussion on the relationship between these two papers and
mine. Another related work is Benigno et al. (2020) who assume that the transition
probabilities are logistic functions of the endogenous variables in the model and use
this model to analyze the Mexican business cycle and financial market.

This paper is organized as follows. In Section 2, I introduce the econometric frame-
work which incorporates the feedback from lagged continuous state variables to regime
formation. Sections 3 and 4 examine the asymptotic properties of the proposed model:
The former establishes the asymptotic equivalence between exact and truncated likeli-
hood and the latter shows the consistency of the exact maximum likelihood estimator.
Two simulation exercises are conducted in Section 5. Section 6 discusses the empirical
application using the DSGE model focusing on the monetary/fiscal policy mix. Section
7 concludes.

Notation.Wedenote the history of a variable zt by zt2t1 = (zt1 , zt1+1, · · · , zt2)where t1 ≤ t2.
For any matrix A, let ∥A∥ denote the operator norm of A. For any symmetric matrices
A and B with the same size, we write A ≥ B (A > B) if A−B is positive semidefinite
(definite). The function ϕ(x;µ,Σ) is the normal probability density function (PDF) with
mean µ and variance Σ evaluated at x, and Φ(x;µ,Σ) is the corresponding cumulative
distribution function (CDF). We simply write ϕ(x) and Φ(x) to denote the PDF and CDF
of the standard normal. When we want to be explicit about the size of x ∈ Rk, we write
ϕk(x) and Φk(x). For any real-valued function f , we denote f+(x) = max{f(x), 0} and
f−(x) = max{−f(x), 0}. For a transition kernel L on a measurable space (X,X ), we
denote

Lf(x) = δxLf =

∫
L(x, dx′)f(x′), µL(A) = µL1A =

∫
µ(dx)L(x,A)

where f : X → R is bounded and µ is a measure on (X,X ). We can combine two
transition kernels L1 and L2 on (X,X ) to construct a new transition kernel L1L2 such
that

L1L2(x,A) =

∫
L1(x, dx

′)L2(x
′, A)
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2. Baseline Specification

This section elaborates on the model specification considered in this paper. I will also
introduce the filtering algorithm to derive the likelihood.

2.1. Regime-Switching State Space Model

Consider the linear-Gaussian state space model with regime-switching parameters
consisting of the observed variable yt ∈ Rdy and the unobserved state variable xt ∈ Rdx.

xt = Astxt−1 +Qstεt

yt = Bstxt +Rstut
(1)

where ut ∈ Rdu and εt ∈ Rdε are independent and follow the standard Gaussian. The
first equation is the transition equation specifying the dynamics of the latent xt using
the VAR(1) model. The second equation is the observation equation which relates the
observed yt with the unobserved xt. The coefficients (Ast , Bst , Qst , Rst) depend on the
discrete latent regime st ∈ S ≡ {0, · · · , S − 1} whose process will be described shortly.
Although the model (1) does not include constant terms, it is fairly straightforward
to incorporate them. As is well known, the linear-Gaussian state space model is the
most commonly used empirical framework to estimate dynamic stochastic general
equilibrium (DSGE)models. The regime-switching structure allows us tomodel changes
in the coefficients across time, such as shifts of monetary policy stance (Dovish vs
Hawkish) and economic volatilities.

In the traditional regime-switching model such as Hamilton (1989), the regime (st)
is assumed to follow a Markov process with time-invariant transition probabilities. This
specification might be restrictive because the regime shifts might occur in response to
changes in economic circumstances. For example, in the context of monetary policy, it
is more natural to believe that the central bank settles on the monetary policy stance
based on various economic conditions such as the inflation rate, unemployment rate,
and the stability of the financial market.

Given this consideration, I specify the regime (st) as a function of the continuous
state variable (xt). More specifically, st ∈ {0, 1} is determined by the following threshold
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type rule2.
st = 1 {τ + λ′xt−1 + ηt ≥ 0} (2)

where τ ∈ R, λ ∈ Rdx, and (ηt) is i.i.d. and follows a distribution with a distribution
function F . In the baseline specification, I will assume F to be the standard normal
to get the simple expression for the regime transition probabilities. Meanwhile, other
choices for F , such as the logistic function, are also possible. Also, ηt can follow the
AR(1) process so that we allow the persistency of regimes irrelevant to the economic
model.

The regime specification by equation (2) allows a linear combination of lagged
continuous state variables λ′xt−1 to influence the regime shifts. This part captures
the feedback from economic conditions to the regime. Going back to the monetary
policy example, the policy stance is influenced by information about various economic
indicators. The constant term τ governs the inclination for being in regime 1. The
specification (2) also includes the random component ηt independent of lags and leads
of (xt, yt). One way to interpret this term is the regime shifter unmodeled in the state
space model, such as political forces. Alternatively, this termmight capture sentiments,
which do not directly drive the business cycle but have an implication for the economic
outcome by causing regime shifts3.

We may interpret this regime rule from the perspective of discrete choice mod-
els popular in microeconomic applications. Suppose there is a decision maker who
determines which regimes to take. In the context of macroeconomic policy analysis,
he/she can be a policy authority. In other applications absent of such an actual decision
maker (e.g., time-varying volatility), we may regard him/her as “nature”. This decision
maker chooses a regime giving a higher payoff. In this context, the left hand side of the
inequality in (2) can be interpreted as a net utility from choosing regime 1 over regime 0.
Especially, this framework fits with optimal policy analyses in which a policy authority
determines the policy variables based on observed state variables4.

2Regime is assumed to bebinary throughout this paper, i.e.,S = 2, while one can extend the framework
to allow more than two regimes.

3In the literature, sentiment is characterized as a shock or variable which affects agents’ decisions
through their information setswithout affecting fundamentals. Among variousways to include sentiments
in structural models, some works in the literature exploit sentiments as equilibrium selection devices.
Conceptually, this idea is close to the regime-switching state space models.

4There is a difference in the setting from the Ramsey style optimal policy analysis. The most prototyp-
ical optimal policy problem, such as Galí (2015), assumes that contemporaneous structural shocks are
observed. To the contrary, the εt is not observed for the decisionmaker in this context.
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2.2. Filtering Algorithm

In order to estimate the parameters, we need to derive the likelihood implied by equa-
tions (1). I introduce the modified Kalman filter allowing for the regime rule given by
equation (2). Here, I describe only the key steps in the algorithm. A detailed description
is given in Appendix A.

The filter iterates the forecasting and updating steps for each t = 1, · · · , T . Each
step is similar to the Kalman filter with regime-switching coefficients proposed by
Kim (1994). The algorithm by Kim assumes that the regime transition probabilities are
time-invariant and are given as parameters. As our transition probabilities depend on
the lagged state variables xt−1, our model needs an extra step to calculate the filtered
transition probabilities for each period.

As in the Kim filter, we need to introduce the collapsing step at the end of each itera-
tion. Otherwise, the likelihood evaluation is subject to path dependence: the likelihood
of yt depends on the entire history of the regime up to period t, which grows with t
exponentially. In the collapsing step, we truncate the number of periods whose regime
we keep track of. More specifically, I assume that the algorithm tracks only the most
recent r(T ) periods. We compress the Sr(T )+1 moments into Sr(T ) expressions to avoid
path dependence. Section 3 proves that this truncation works well: the likelihood de-
rived from the truncated algorithm is asymptotically equivalent to the exactly evaluated
likelihood as we increase r(T )with T . For brevity, I simply write r to express r(T ) unless
I need to stress the dependence of the truncation number on the sample size.

Appendix A derives the transition probability from st−1
t−r+1 to st given Ft−1 = σ(yt−1

1 ),
the σ-field generated by the history of observations. It is shown that we have to consider
the lag-augmented state space model:[

xt

xt−1

]
=

[
Ast O

I O

][
xt−1

xt−2

]
+

[
Qst

O

]
εt

yt =
[
Bst O

] [ xt

xt−1

]
+Rstut

We re-define xt = [x′t, x
′
t−1]

′ and so forth. Assuming ηt ∼ N(0, 1), the transition proba-
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bility from st−1 = 0 to st is approximated as

pr(st = 0|st−1 = 0, st−2
t−r+1,Ft−1)

≈
Φ
(
−τι2; Λx̄t−1|t−1(s

t−2
t−r+1), I + ΛΩ̄t−1|t−1(s

t−2
t−r+1)Λ

′)
Φ
(
−τ ;λ′

(
x̄t−1|t−1(s

t−2
t−r+1)

)
(dx+1:2dx)

, 1 + λ′
(
Ω̄t−1|t−1(s

t−2
t−r+1)

)
(dx+1:2dx,dx+1:2dx)

λ
)

where ιn (n ∈ N) is a n × 1 vector whose elements are all unity, Λ =

[
λ′ 0

0 λ′

]
is a

2 × dx matrix, x̄t−1|t−1(s
t−2
t−r+1) and Ω̄t−1|t−1(s

t−2
t−r+1) are conditional mean and variance

of the state vector in the lag-augmented state space model given st−2
t−r+1 and Ft−1. In

the denominator, we extract (dx + 1)-th to 2dx-th elements from x̄t−1|t−1(·) and the
corresponding rows and columns from Ω̄t−1|t−1(·). Appendix A shows the transition
probabilities for other combinations of (st−1, st) as well. Due to the trancation explained
above, those two expressions approximate xt−1|t−1(s

t−2
1 ) and Ωt−1|t−1(s

t−2
1 ), the objects

from the exact filter. The bars in the conditional mean and variance are placed to be
explicit about the approximation.

Augmenting these approximated transition probabilities in the forecasting step
enables us to derive the likelihood of the model, which is the ingredient of maximum
likelihood estimation as well as Bayesian inference.

2.3. Comparison with Related Regime-Switching Rules

Before concluding this section, it might be instructive to compare the proposed method
with the other endogenous regime-switching frameworks.

To examine the long-run Phillips curve, the relationship between trend inflation and
trend output, Ascari et al. (2022) incorporate a particular type of endogenous regime-
switching. Their long-run Phillips curve has a kink depending on trend inflation: The
slope of the long-run Phillips curve changes when the trend inflation crosses a certain
threshold. More specifically, their regime indicator can be expressed as st = 1{π̄t ≥ τ}.
This specification has similarities with equation (2) except that they are incorporating
the feedback from the current state variable to the regime and they shut down the
stochastic component ηt. Since it is straightforward to incorporate the current xt into
(2), the empirical model by Ascari et al. (2022) can be regarded as a special case of my
framework. In terms of the estimation strategy, while their filter is based on particle
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filtering, this paper develops the algorithm based on the Kalman filter5. Although I do
not compare these two, the latter is more straightforward and expected to be faster.

Extending Chang et al. (2017) (CCP henceforth) approach of modeling endogenous
regime-switching, Chang et al. (2021) consider the regime specification in which the
unobserved regime st ∈ {0, 1} is determined by the latent regime factor wt.

st = 1 {wt ≥ −τ}

wt = αwt−1 + ρ′εt−1 + νt
√

1− ρ′ρ, νt ∼ N(0, 1)
(3)

where ρ ∈ Rdε satisfies ρ′ρ < 1 and νt is independent of (ut) and (εt). The regime
factor is dependent on the past structural shock εt−1, which specifies the feedback from
economic conditions to regime determinations. By sequential iteration, the CCP regime
factor wt can be written as

wt = αtw0 +
t∑

j=1

αj−1ρ′εt−j +
√

1− ρ′ρ×
t∑

j=1

αj−1νt+1−j

On the other hand, we can express the terms inside the indicator function in equation
(2) as

λ′xt−1 + ηt = λ′

(
t−1∏
j=1

Ast−j

)
x0 + λ′

t−1∑
j=1

(
j∏

k=1

Ast−j

)
Qst−j

εt−j + ηt

Both of these two equations involve the summation of initial conditions, the path of
structural shocks (εt), and stochastic terms. Although the initial structural shock ε0
matters for the former but does not for the latter, its contribution is expected to be
negligible under |α| < 1. Hence, my framework can be regarded as an unweighted
version of CCP-type regime-switching.

It is straightforward to see that equation (2) is identical to equation (3)whenλ = ρ = 0

and ηt follows an AR(1) process6. As shown by CCP, this case reduces to the traditional
Hamilton (1989) filter. In other words, when we shut down the endogenous feedback in
the regime determination, my and CCP’s frameworks are nothing but regime-switching
models with time-invariant transition probabilities.

Although which of the regime specifications is suitable would be an application-
dependent question, an advantage of my approach is the robustness to non-invertibility.

5Since Ascari et al. (2022) deal with nonstationary variables, the asymptotic properties discussed later
do not hold for their model.

6It is straightforward to allow ηt to follow an AR(1) process, which is discussed in Appendix A.
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When themodel is non-invertible, agents cannot recover current structural shocks from
current and past observations. Under such a situation, it might be more natural to think
that regime shifts happen based on lagged observation rather than structural shocks.

3. Asymptotic Equivalence between Exact and Truncated Likelihood
Functions

This section establishes the asymptotic equivalence between the likelihood inferred
from the Kalman filter presented in the previous section and the exact likelihood. We
fix the collection of parameters θ, which lies in a compact parameter space Θ. Let

ψ(st1 , · · · , st2) =


Ast1 · · ·Ast2 if t1 > t2

I if t1 = t2

A−1
st1

· · ·A−1
st2

if t1 < t2

The following two assumptions are standard in the control theory and required to
establish the stability of the filter.

ASSUMPTION 1 (Uniform Complete Observability). There exists N ∈ N and βUCO ≥
αUCO > 0 such that for any sN0 ∈ {0, 1}N+1,

0 < αUCOI ≤
N∑
t=0

ψ(st+1, · · · , sN)′B′
st(RstR

′
st)

−1Bstψ(st+1, · · · , sN) ≤ βUCOI

ASSUMPTION 2 (Uniform Complete Controllability). There exists N ∈ N and βUCC ≥
αUCC > 0 such that for any sN1 ∈ {0, 1}N ,

0 < αUCCI ≤
N−1∑
t=0

ψ(sN , · · · , st+2)Qst+1Q
′
st+1

ψ(sN , · · · , st+2)
′ ≤ βUCCI

Intuitively, the observability implies that we can recover the initial continuous
state variable given the observed variables (yt). The controllability guarantee that any
desirable states is attained by manipulating error terms (εt).

To see how these two assumptions work in our framework, we consider the Kalman
filter with the different initial variance-covariancematricesΩ1 andΩ2 but with the same
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path of regime realizations (s1, · · · , st). Denote Ω1
t|t(s

t
1) and Ω2

t|t(s
t
1) to be the conditional

variance associated withΩ1 andΩ2 respectively. We letΨ(st1) = (I−K(st1)Bst)Ast where
K(st1) = Ωt−1|t−1(s

t−1
1 )B′

st(BstΩt−1|t−1(s
t−1
1 )B′

st +RstR
′
st) is the Kalman gain given s

t
1. For

k ∈ N, we let Ψk(st1) = Ψ(st1)Ψ(st−1
1 ) · · ·Ψ(st−k+1

1 ) and define Ψ0(st1) = I. Then, we can
write

Ω1
t|t(s

t
1)− Ωt|t(s

t
1) = Ψ(st1)

(
Ω1
t−1|t−1(s

t−1
1 )− Ω2

t−1|t−1(s
t−1
1 )

)
Ψ(st−1

1 )′

= · · ·

= Ψt−1(st1)
(
Ω1 − Ω2

)
Ψt−1(st−1

1 )′

Therefore, we should examine the property of Ψk(·) to see whether the filter is con-
vergent. Jazwinski (1970) shows the exponential convergence of Ψk(·) with respect to k
under the uniformly complete observability and controllability.

LEMMA 1 (Theorem 7.4 in Jazwinski (1970)). Assume Assumptions 1 and 2. Then, the filter
is uniformly asymptotically stable. In other words, there exist positive constants c1, c2 such
that

max
st1

∥∥Ψk(st1)
∥∥ ≤ c1 exp(−c2k)

The stability of the Kalman filter established in this lemma plays a crucial role in
our proof.

Set the initial state variables arbitrarily: x1 = x̃ and s1 = s̃. Although these two initial
variables are fixed at this moment, we can allow x1 and s1 to follow known distributions
with a minor modification of the proof. Let pr(T ),θ(yT1 |x1 = x̃, s1 = s̃) be the likelihood
with the truncated regime with parameters θ and pθ(yT1 |x1 = x̃, s1 = s̃) be the exact
likelihood. The following proposition shows that the difference between the two is
asymptotically negligible.

PROPOSITION 1. Assume Assumptions 1 and 2 and let F be a standard normal distribution.
We have

∣∣log pr(T ),θ(yT1 |x1 = x̃, s1 = s̃)− log pθ(y
T
1 |x1 = x̃, s1 = s̃)

∣∣ = Op(exp (c2r))

for any θ ∈ Θ, where c2 is given in Lemma 1.

Intuitively, the contribution of past information becomes smaller as time goes by
because of the convergent property of the Kalman filter. Due to Lemma 1, wemay safely
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ignore the regime realizations in the distant past. This convergence is attained with
exponential speed.

Here I provide the sketch of the proof. The details can be found in Appendix B. We
simply denote r = r(T ) henceforth. We can write the truncated likelihood function as

pr,θ(y
T
1 |x1 = x̃, s1 = s̃) = p(y1|x̃, s̃)

×
∑
sT2

{
T∏

t=r+1

[
pr(yt|stt−r+1,Ft−1)pr(st|st−1

t−r+1,Ft−1)
] r∏
t=2

[
p(yt|st1,Ft−1)p(st|st−1

1 ,Ft−1)
]}

On the other hand, the exact likelihood function is given by

pθ(y
T
1 |x1 = x̃, s1 = s̃) = p(y1|x̃, s̃)×

∑
sT2

T∏
t=2

[
p(yt|st1,Ft−1)p(st|st−1

1 ,Ft−1)
]

Then we can write

pr,θ(y
T
1 |x1 = x̃, s1 = s̃) ≤pθ(yT1 |x1 = x̃, s1 = s̃)

×
T∏

t=r+1

exp

(
max
st2

∣∣log pr(yt|stt−r+1,Ft−1)− log p(yt|st1,Ft−1)
∣∣)

×
T∏

t=r+1

exp

(
max
st2

∣∣log pr(st|st−1
t−r+1,Ft−1)− log p(st|st−1

1 ,Ft−1)
∣∣)
(4)

After taking the log to both hand sides, the difference between the log two likelihood
functions log pr,θ(yT1 |x1 = x̃, s1 = s̃) and log pθ(yT1 |x1 = x̃, s1 = s̃) can be attributed to the
difference in the log likelihood of yt given the regime realization (the second line) and
the difference of the regime transition probabilities (the third line). Since both of them
are functions of the conditional mean and variance implied from the filter, we may
compare the differences of the mean and variance from the updated and exact filters.

Let x̄t|t(stt−r+2) and xt|t(st1) be the updated mean of xt from the truncated and exact
filters, respectively. Likewise, let Ω̄t|t(s

t
t−r+2) and Ωt|t(s

t
1) be the updated variance of xt.

Define ∆Ω
r,t = Ω̄t|t(s

t
t−r+2) − Ωt|t(s

t
1) and ∆x

r,t = x̄t|t(s
t
t−r+2) − xt|t(s

t
1). Utilizing Lemma

1, Proposition A1 in the appendix shows that there exist positive constants cΩ,∆ and c2
(identical to c2 in Lemma 1), as well as a positive and stochastically bounded random
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variableMx,t such that

max
st1

∥∆Ω
r,t∥ ≤ cΩ,∆ exp(−2c2(r − 1))

max
st1

∥∆x
r,t∥ ≤Mx,t exp(−c2(r − 1))

Utilizing these inequalities, it can be shown the boundedness of the second and
third lines of (4), establishing our claim.

REMARK 1. Li (2023) shows the identical result when (i) dx = dy = dε = du = 1 and (ii) (st)
follows a usual Markov chain with constant transition probabilities. Proposition 1 generalizes
her proposition in these two respects.

REMARK 2. Suppose again dx = dy = dε = du = 1. One can show that the convergence rate
of the difference between two likelihood functions is Op

(
A
r(T )−1
max

)
where Amax = maxs |As|.

Thus, the speed of convergence depends on the maximum persistence of the continuous state
variable xt across regimes. This observation is intuitive because the past information would
be preserved more as we increase the persistence. Loss of information caused by the regime
truncation is expected to be large when the system is more persistent. In the general vector
case, the convergence rate depends on the constant c2 which is hard to describe analytically.

Note that this proof can be generalized to other forms of regime transition proba-
bilities. As explained in Appendix B, to show the asymptotic negligibility of exact and
approximated transition probabilities, we interpret those probabilities as functions
of conditional mean and variance of the state vector xt. Under differentiability with
respect to these mean and variance, we apply the mean value theorem and show the
stochastic boundedness of the gradient. Even if we formulate the transition probabilities
differently, we can show the asymptotic negligibility as long as we can establish that
the gradient is stochastically bounded.

4. Consistency of Maximum Likelihood Estimator

This section shows the consistency of the exact maximum likelihood estimator. I prove
the consistency for a class of regime rules more general than (2). Before discussing the
main proposition of this section, I introduce the framework with examples.
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4.1. Specification

Consider state space models with regime-switching coefficients introduced by (1). The
transition probability of regimes is specified as qθ(st+1|st, xt, yt) whose time-varying
property is expressed as the dependence on the current observation yt and the continu-
ous state variable xt. This specification includes the regime rule (2). I provide two other
examples whose regime transition probabilities are written in this form.

EXAMPLE 1. Chang et al. (2021) incorporate the endogenous regime-switching structure à la
CCP, equations (3), into state-space models. Consider the augmented state space system so that
we can characterize the transition probability consistently with the notation introduced above.

[
xt

xt−1

]
=


Ast︸︷︷︸
dx×dx

O︸︷︷︸
dx×dx

I︸︷︷︸
dx×dx

O︸︷︷︸
dx×dx


[
xt−1

xt−2

]
+


Qst︸︷︷︸
dx×dε

O︸︷︷︸
dx×dε

 εt
yt =

[
Bst︸︷︷︸
dy×dx

O︸︷︷︸
dy×dx

][
xt

xt−1

]
+Rstut

The transition probability can be written as

qθ(st+1|st, [x′t, x′t−1]
′, yt) = (1− st+1)ωρ + st+1(1− ωρ)

where

ωρ =

[
(1− st)

∫ −τ
√
1−α2

−∞ +st
∫∞
−τ

√
1−α2

]
Φ

(
−τ−ρ′Q−1

st (xt−Astxt−1)√
1−ρ′ρ − αz√

1−α2
√
1−ρ′ρ

)
ϕ(z)dz

(1− st)Φ
(
−τ

√
1− α2

)
+ st

(
1− Φ

(
−τ

√
1− α2

))
EXAMPLE 2. In the context of regime-switching models without continuous state variables,
Diebold et al. (1994) specify the transition matrix of st ∈ {0, 1} as[

p00(xt) p01(xt)

p10(xt) p11(xt)

]
, pij(xt) = 1− pii(xt), for i ̸= j

where xt ∈ Rk is observed and p00, p11 : Rk → [0, 1] are the weighting functions, typically
modeled as the logistic function.

If we instead consider state-space models, we may model the transition probability as
qθ(st+1 = j|st = i, xt, yt) = pij(xt). The difference here is that the transition probability
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is depending on the continuous state variables xt. The application to the monetary policy
analysis can be found in Davig and Leeper (2006) where the coefficient in the Taylor rule
changes discretely based on whether the inflation rate is below or above a certain threshold.

The same discussion holds when the transition depends on the observed variable instead
of the latent state variable: we may simply replace xt with yt. For example, Auerbach and
Gorodnichenko (2012) investigate state-contingent effects of fiscal stimulus using the structural
autoregression, a special case of state-space models. To specify whether the economy is in a
boom or recession, they use a logistic function that translates the moving average of the output
growth rate into a weight between zero and one.

Let ξt = (x′t, st)
′ characterize the unobserved state variables whose support is given

byX = Rdx × S. We define

q̃θ(ξt+1|ξt, yt) = ϕ
(
xt+1;Ast+1xt, Qst+1Q

′
st+1

)
qθ(st+1|st, xt, yt)

andQθ(ξt+1|ξt, yt) to be the probability measure associated with q̃θ(ξt+1|ξt, yt), which is
the transition kernel of ξt given yt. Let X ≡ B(Rdx) × σ(S) where B(Rdx) is the Borel
σ-field generated by Rdx and σ(X) is a σ-field generated by a setX. Given a probability
measureχ on (X,X )which canbe interpreted as the initial distribution of state variables
ξ1, we define the likelihood function of ynm = (y′m, · · · , y′n)

′ as

pθχ(y
n
m) =

∫
· · ·
∫
χ(dξm)ϕ

(
ym;Bsmxm, RsmR

′
sm

)
×

n∏
p=m+1

Qθ(dξp|ξp−1, yp−1)ϕ
(
yp;Bspxp, RspR

′
sp

) (5)

Then, the maximum likelihood estimator of θ is defined as7

θ̂χ,T ≡ argmax
θ∈Θ

pθχ(Y
T
1 )

4.2. Consistency

We need the stationarity of (yt) and (xt).

ASSUMPTION 3. (yt) and (xt) are stationary processes.

Here I list additional assumptions to establish consistency.
7In this section, the variables denoted by uppercase letters are random variables, and the correspond-

ing lowercase letters are realizations.

17



ASSUMPTION 4. There exists a positive integer k such that for any yk1 ∈ (Rdy)k and xk1 ∈
(Rdx)k, we have

inf
θ∈Θ

inf
s1,sk+1

qθ(sk+1|s1, xk1, yk1) > 0

where qθ(sk+1|s1, xk1, yk1) =
∑

sk1

∏k−1
i=0 q

θ(si+1|si, xi, yi).

This assumption implies that any regime can be reached with a positive probability
after k periods for any θ ∈ Θ, in parallel with the irreducibility in usual Markov pro-
cesses. This is essential for the asymptotic analysis because, otherwise, there might be
a regime that cannot be reached forever. In fact, this assumption holds not only for my
specification (2) but also for the examples given in this section with k = 1.

We also require continuity of the transition probability qθ with respect to θ.

ASSUMPTION 5. The function θ 7→ qθ(st+1|st, xt, yt) is continuous onΘ for any (st+1, st, xt, yt).

We define the unnormalized transition kernel of (ξt) given the observations yt1.

Lθ⟨yt1⟩(ξ1, A) =
∫

· · ·
∫ [ t∏

i=1

ϕ
(
yi;Asixi, RsiR

′
si

)
Qθ(dξi+1|ξi, yi)

]
1A(ξt+1)

Note that Lθ⟨yt1⟩(ξ1, A) = pθδξ1
(yt1). Under some assumptions on the initial distribution,

Proposition 2 shows the forgetting of the initial distribution χ in (i), the convergence of
likelihood function in (ii), and finally the consistency in (iii).

PROPOSITION 2. Assume Assumptions 3–5. For a compact set D ∈ X and k ∈ Z, take
M(D, k) the family of probability measures in (X,X ) such that

M(D, k) =

{
χ : E

[
log− inf

θ∈Θ
χLθ⟨Y u

1 ⟩1D
]
<∞, for any u = 1, · · · , k

}
(i) For any θ ∈ Θ, there exists a measurable function πθY : (Rdy)Z

− → R, which does not
depend on χ, such that for any χ ∈ M(D, k),

P

[
lim
m→∞

pθχ(Y
0
−m)

pθχ(Y
−1
−m)

= πθY
(
Y 0
−∞
)]

= 1

and moreover,
E
[∣∣log πθY (Y 0

−∞)
∣∣] <∞
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(ii) For any θ ∈ Θ and χ ∈ M(D, k),

lim
T→∞

T−1 log pθχ(Y
T
1 ) = ℓ(θ)

almost surely where ℓ(θ) ≡ E
[
log πθY

(
Y 0
−∞
)]
.

(iii) Define Θ∗ ≡ argmaxθ∈Θ log pθχ
(
Y T
1

)
⊂ Θ. For any χ ∈ M(D, k), we have

lim
T→∞

d
(
θ̂χ,T ,Θ

∗
)
= 0

almost surely.

The proof is provided in Appendix B. Since the framework by Douc and Moulines
(2012) can be applied to our model, the Appendix is verifying the assumptions for their
Theorem 2.

To get an idea about why the maximum likelihood estimator is consistent, it is
instructive to overview the proof by Douc and Moulines (2012), which is composed of
two steps. In the first step, they establish that the limit of the likelihood function exists
and it does not depend on the initial distribution χ.

lim
T→∞

T−1 log pθχ,T (Y
T
1 ) = lim

T→∞
T−1E

[
log pθχ(Y

T
1 )
]
= ℓ(θ)

Note that the log likelihood can be written as log pθχ(Y
n−1
0 ) =

∑n−1
k=0 log p

θ
χ(Yk|Y k−1

0 ).
One can show the existence of the limit of log pθχ(Y0|Y −1

−m), P− a.s., which is denoted by
πθY (Y

0
−∞). Since {Yk}k∈Z is assumed to be stationary ergodic, the log-likelihood converges

to ℓ(θ) by the Birkhoff ergodic theorem.
The proof is done by showing the second step: the sequence of themaximizers of log-

likelihood {argmaxθ∈Θ T
−1 log pθχ(Y

T
1 )}T≥1 converges to the maximizer of ℓ(θ) almost

surely.

REMARK 3. Proposition 2 does not establish the identification of the estimator. It is known that
even linear-Gaussian state space models without regime-switching coefficients cannot be glob-
ally identified8. To the best of my knowledge, the literature has not provided the identification
of regime-switching state space models even with time-invariant transition probabilities.

8For example, Hamilton (1994) discusses two simple models that are observationally equivalent.
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TABLE 1. Simulation Design

st = 0 st = 1

Ast Varies Varies
Bst 1 1
Qst 1.0 2.0
Rst 1.0 1.5
λ 0.8
τ 0.2

TABLE 2. Log Likelihood from Univariate Model

(1) (2) (3) (4)
(A0, A1) (0.7,0.95) (0.5,0.95) (0.5,0.7) Time (ss)
r = 1 0.0063 0.0056 0.0049 0.070
r = 2 4.95e-04 2.67e-04 9.61e-05 0.130
r = 3 4.47e-05 1.96e-05 4.91e-06 0.248
r = 4 3.98e-06 1.44e-06 2.45e-07 0.481
r = 10 — — — 29.306

Note: The columns (1)-(3) report the median of the absolute difference between log-
likelihood with r = 10 and the one with the corresponding r. The last column displays
the median implementation time for (A0, A1) = (0.7, 0.95).

5. Simulations

This section conducts two simulations to evaluate the finite-sample performance of the
filter whose asymptotic properties are investigated in the previous sections. Especially,
we are interested in how different assumptions on the truncation number r affect the
log-likelihood as well as the parameter inference. The first exercise examinesmaximum
likelihood estimates of parameters of a simple univariate model. The second simulation
considers a larger model mimicking a small-scale New-Keynesian model with a regime-
switching monetary policy rule to see the sensitivity of the log-likelihood to r.

5.1. Simulation 1: Univariate Model

The first simulation design considers a simple state space model with dx = dy = du =

dε = 1. We generate the random sample {yt}Tt=1 based on the parameters given by
Table 1. Persistency of xt captured by Ast will be varied across simulation designs while
keepingA0 < A1. The standard deviationsQst andRst are also larger in regime 1. Hence,
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regime 1 can be interpreted as amore persistent and volatile one.We allow the feedback
from xt−1 to the regime determination by setting nonzero λ. Regime 1 is more likely to
happen since τ is positive. Time length is set as T = 400.

To begin with, we evaluate the difference in log-likelihood derived from small r
plausible for empirical applications and the one from relatively large truncation order
r = 10 over 500 simulations. Both of them are evaluated at the true parameters. Given
that it is almost infeasible to calculate the exact log-likelihood (i.e., r = 400), our
benchmark is set to be r = 10.9

Table 2 reports themedian of absolute differences between two log-likelihood values
across different (A0, A1). In all cases, the difference shrinks as we enlarge r and the
rate of shrinkage seems to be exponentially fast. These are as expected given that the
order of convergence was Ar−1

max as we saw in Section 3. Another implication from Table
2 is that the model exhibiting less persistency gives a smaller difference. Although the
asymptotic convergence depends sorely on more persistent regime Amax theoretically
as pointed out in Section 3, the less persistent regime also matters in the simulation as
is clear by comparing columns (1) and (2).

To investigate the computational burden, the last column of Table 2 displays the
median run time to calculate the likelihood. As we have to keep track of the 2r history
of regimes, the run time is almost doubled as we increase r by one. When r = 10, the
filter spends almost half minute to derive the likelihood. It is unrealistic to estimate the
model in such a setting since the estimation algorithm generally requires us to evaluate
the likelihood at least thousands of times.

Next, we estimate the parameters (A0, A1, Q1, R1, τ, λ)with the maximum likelihood
estimation for each combination of (A0, A1), whose results are displayed in Table 3.10

Generally speaking, the parameters are estimated close to the truth and the intervals
of the estimates are reasonable. We do not see substantial differences in parameter
estimates across different r. Although we might expect that an increase in r leads to a
more precise estimation as the likelihood function becomes more accurate, we do not
see an improvement in the estimates for larger r.
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TABLE 3. Maximum Likelihood Estimates

r 1 2 3 4 Truth
Panel A. (A0, A1) = (0.7, 0.95)

A0
0.6794

(0.50,0.78)
0.6794

(0.50,0.78)
0.6794

(0.50,0.78)
0.6794

(0.50,0.78)
0.7

A1
0.9458

(0.88,0.97)
0.9458

(0.88,0.97)
0.9458

(0.88,0.97)
0.9458

(0.88,0.97)
0.95

Q1
2.0384

(1.75,2.40)
2.0379

(1.75,2.40)
2.0379

(1.75,2.40)
2.0379

(1.75,2.40)
2.0

R1
1.4737

(1.12,1.77)
1.4735

(1.12,1.77)
1.4735

(1.12,1.77)
1.4735

(1.12,1.77)
1.5

Panel B. (A0, A1) = (0.5, 0.95)

A0
0.4723

(0.25,0.62)
0.4727

(0.25,0.62)
0.4727

(0.25,0.62)
0.4727

(0.25,0.62)
0.5

A1
0.9470

(0.89,0.97)
0.9470

(0.89,0.97)
0.9470

(0.89,0.97)
0.9470

(0.89,0.97)
0.95

Q1
2.0349

(1.74,2.40)
2.0345

(1.74,2.40)
2.0345

(1.74,2.40)
2.0345

(1.74,2.40)
2.0

R1
1.4791

(1.13,1.77)
1.4787

(1.13,1.77)
1.4788

(1.13,1.77)
1.4788

(1.13,1.77)
1.5

Panel C. (A0, A1) = (0.5, 0.7)

A0
0.4809

(0.29,0.61)
0.4809

(0.29,0.61)
0.4809

(0.29,0.61)
0.4809

(0.29,0.61)
0.5

A1
0.6914

(0.52,0.82)
0.6917

(0.52,0.82)
0.6917

(0.52,0.82)
0.6917

(0.52,0.82)
0.7

Q1
2.0468

(1.54,2.57)
2.0456

(1.54,2.57)
2.0455

(1.54,2.57)
2.0455

(1.54,2.57)
2.0

R1
1.4539

(0.29,1.89)
1.4519

(0.31,1.89)
1.4519

(0.31,1.89)
1.4519

(0.31,1.89)
1.5

Note: This table reports the median of maximized likelihood estimates over 500 simula-
tions along with 5 and 95% percentiles in parentheses.
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TABLE 4. Log-Likelihood from Chang et al. (2021) Model

Abs Diff of Loglik Time (ss)
r = 1 0.1014 0.1248
r = 2 0.0111 0.2366
r = 3 0.0026 0.4615
r = 4 7.55e-04 0.9134
r = 10 — 59.1491

Note: The left column shows the median of the absolute difference in log-likelihood
between r = 1, 2, 3, 4 and r = 10 over 500 replications. The right column shows the
median implementation time.

5.2. Simulation 2: Log-Likelihood from DSGE

The purpose of the second simulation exercise is to examine whether the regime trunca-
tion matters in the more realistic model. Given that DSGE models are rarely estimated
with the maximum likelihood method, we only provide the log-likelihood with differ-
ent r. It is instructive to check whether the log-likelihood is precisely calculated with
relatively small r as it is the most important ingredient of Bayesian inference.

I use the model by Chang et al. (2021) as a laboratory, which is a small-scale New-
Keynesian model resembling An and Schorfheide (2007) with the regime-switching
Taylor rule. The monetary policy regime is determined by the CCP-type threshold rule.
Given that we use the proposed filter in the empirical application in the next section, it
is instructive to see whether the filter works well in such a prototypical model.

I solve the Chang et al. (2021) model at the posterior mean to deduce the state
space representation11. For each element in xt, I draw λ randomly from the uniform
distribution from -0.5 to 0.5 and fix these values across simulations. The constant term τ

is assumed to be−0.75. The time length is T = 200, which is close to the sample length
of most DSGE applications using the post-WWII quarterly data.

Table 4 lists themedian of the absolute value of the difference between log-likelihood
with r = 1, 2, 3, 4 and the one with r = 10 over 1,000 replications along with the median
implementation time to run the filter. The absolute differences are enlarged compared

9Another possible strategy to approximate the exact log-likelihood is to use the filtering algorithm
allowing for nonlinearity. Kim and Kang (2019) use the particle filter to examine the accuracy of Kim
(1994) filter.

10The estimates for τ and λ are omitted since they are unstably estimated possibly due to issues in the
numerical optimizer.

11This step is done with the RISE Toolbox. I describe this toolbox in the next section.
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to the simple univariate application (Table 2), but they are still close to zero. We also
see the shrinkage of the difference for larger r, consistent with both theory and the
previous simulation result. In terms of the run time displayed in the right column, we
can calculate the likelihood with a reasonable amount of time even for the relatively
large state-space model studied here. However, the computational burden grows ex-
ponentially as r gets larger and the case with r = 10 ends up spending one minute to
calculate the likelihood just once.

6. Empirical Application

This section provides the empirical application. I incorporate the regime rule (2) into
the New-Keynesianmodel with themonetary-fiscal policymix by Bianchi and Ilut (2017).
After describing the overview of the model, I will discuss the prior distributions of the
parameters as well as the estimation strategy. Then I provide the posterior distributions
and show that the proposed model is useful in the forecasting context. I assume r = 1

throughout this section12. Additional results, including impulse response functions, can
be found in Appendix C.

6.1. Model

We begin by introducing the structure of the model. Then we discuss the specification
of regime switching.

6.1.1. Overview

This subsection discusses the basic framework of the structural model. The full descrip-
tion is given in Appendix C.

The model is based on Bianchi and Ilut (2017) which studies the monetary/fiscal
policy mix in the postwar U.S. with a particular emphasis on the Great Inflation from
the late 1970s and the early 1980s. The representative household consumes the final
good and supplies labor for each period. In addition to the one-period government
bond, he/she is allowed to hold the long-term securities provided by the government.
There is a continuum of firms producing differentiated goods, which are combined to

12Most of existing papers on regime-switching DSGEmodels use the filter with r = 1with the exception
of Nimark (2014) who considers r = 4.
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form the final consumption good. These firms are subject to monopolistic competition
as well as quadratic price adjustment costs.

The government operates fiscal and monetary policies. The one-period government
bond is assumed to have zero net supply. Total government expenditure is a combination
of direct lump-sum transfer to the household and government spending. The total
government expenditure and interest payment of the government bondwill be financed
by the lump-sum tax which follows the prespecified tax rule. The nominal interest rate
is determined according to the Taylor rule depending on the current inflation rate and
the output gap. The tax rule and Taylor rule are subject to regime-switching, which will
be discussed later.

6.1.2. Regime-Switching

We introduce two discrete variables governing regimes: svolt ∈ {0, 1} related to volatility
and spolt ∈ {AM/PF, PF/AM} related to policy rules. The volatility of the structural
shocks changes over time depending on svolt . Regime svolt = 1 can be regarded as volatile
times. Regime shifts for volatility occur following a time-invariant transition probability
matrix P vol.

P vol =

[
1− pvol1,2 pvol1,2

pvol2,1 1− pvol2,1

]

The exogenous switching is assumed for svolt to reduce the computational cost. In the
meantime, this assumption might be reasonable if we regard the changes in economic
volatility as events caused chiefly by reasons outside the model. For example, the esti-
mation result by Bianchi and Ilut (2017) suggests that the oil crisis around the mid-1970s
is classified as a high volatility regime and this episode is mainly driven by geopolitical
forces. Also, large volatility around the Great Recession is a result of the instability in
the financial market, while we do not model the financial friction explicitly.

Another regime spolt ∈ {AM/PF, PM/AF} is related to the monetary/fiscal policy
mix pioneered by Leeper (1991)13. AM/PF stands for the combination of active monetary
and passive fiscal policies, and PM/AF represents passive monetary and active fiscal
policies. To illustrate the role of the policy regime, we look at the tax rule and the Taylor
rule after linearization.

τ̃t = ρτ (s
pol
t )τ̃t−1 +

(
1− ρτ (s

pol
t )
) [
δb(s

pol
t )b̃mt−1 + δeẽt + δy (ŷt − ŷ∗t )

]
+ στ (s

vol
t )ετt

13See Cochrane (2023) for a textbook treatment.
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R̃t = ρR(s
pol
t )R̃t−1 +

(
1− ρR(s

pol
t )
) [
ψπ(s

pol
t )π̃t + ψy(s

pol
t ) (ŷt − ŷ∗t )

]
+ σR(s

vol
t )εRt

where we assume δb(AF ) < δb(PF ) and ψπ(PM) < ψπ(AM). The tax rate τ̃t responds
to the lagged debt-to-output ratio b̃mt−1, government expenditure ẽt, and output gap
ŷt − ŷ∗t . The policy interest rate R̃t is influenced by inflation rate π̃t as well as output
gap. On the one hand, the first policy regime, AM/PF, is the usual assumption in the
New-Keynesian framework where fiscal policy is responsible for stabilizing the debt-
to-output ratio b̃mt−1 by increasing the tax rate τ̃t while monetary policy controls the
nominal interest rate R̃t to make the inflation rate close to its target level. On the other
hand, fiscal policy plays a role to determine the inflation rate in the PM/AF regime. A
fiscal adjustment in response to an increase in the debt-to-output ratio is insufficient
under this regime because the coefficient on the debt level δb(AF ) is small. In order
to satisfy the transversality condition, there must be inflation enough to inflate away
the public debt. The central bank gives up stabilizing the price level and responds to
changes in the inflation rate weakly. Note that our framework does not include the
AM/AF regime considered in the original Bianchi and Ilut (2017) model. The periods
classified as AM/AF by Bianchi and Ilut (2017) are very short compared to the other
two regimes and our regime determination rule does not allow to have more than two
regimes whose order cannot be defined14.

The regime indicator spolt is determined according to equation (2).We need to restrict
some elements of λ to zero, however. This is because we have a few dozen endogenous
variables xt in the solved DSGE system, and allowing all elements of λ to be uncon-
strained would add plenty of parameters to be estimated. Although there is no criterion
on how to select variables mattering for regime shifts, we use the following regime
determination rule.

spolt =

AM/PF if τ pol + λy(ŷt−1 − ŷ∗t−1) + λππ̃t−1 + λRR̃t−1 + λbb̃t−1 + λτ τ̃t−1 + ηt ≥ 0

PM/AF otherwise
(6)

where ηt = ρηηt−1 + εη,t, εη,t ∼ N(0, 1). Output gap ŷ − ŷ∗ is included in order to capture
the business cycle fluctuation. The rest of the variables π̃, R̃, b̃, and τ̃ play important

14One may think about introducing two regime factors representing the monetary and fiscal policy
stance respectively. It enables us to investigate two other policy combinations not considered here:
AM/AF and PM/PF. Instead, I assume that the one regime indicator determines the monetary/fiscal
policy mix jointly to reduce the computational burden. The consensus in the literature is that the periods
classified as AM/AF and PM/PF are short compared to the others, possibly because they do not have
unique rational expectations equilibrium (AM/AF gives an explosive equilibrium, and PM/PF is subject to
the indeterminacy of equilibria).
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roles in the monetary/fiscal policy mix15. Allowing for serial correlation in the error
term ηt crucially matters for the estimation results because, if not, the persistence of
spolt depends sorely on that of economic variables.

6.2. Data, Solution, and Estimation

We construct the dataset based on Bianchi and Ilut (2017) which consists of quarterly
observations of real output growth, inflation rate, debt-to-GDP ratio, federal tax revenues
to GDP ratio, federal expenditure to GDP ratio, and government purchases to GDP ratio16.
The sample covers 1954Q4-2009Q3.

The model needs to be solved for each draw of the parameters to get state space
representations. I employ the perturbation method proposed by Maih and Waggoner
(2018) which accommodates regime-switching DSGE with time-varying transition prob-
abilities as in our application. Maih andWaggoner’s perturbation method is available in
the Rationality In Switching Environments (RISE) Toolbox developed by Junior Maih17.
I utilize the built-in functions in RISE to solve the model and then plug in the resulting
state space representation intomy filtering algorithm to obtain the likelihood. TheMaih
and Waggoner (2018) perturbation method is discussed in more detail in Appendix C.

Due to the nonlinearity of ourmodel, the posterior distributionmight be irregular or
multimodal. Given this consideration, themodel is estimated via SequentialMonte Carlo
(SMC) which is a variant of the Markov Chain Monte Carlo methods and is known to be
robust to such a nonstandard posterior distribution. Appendix C provides the details.
Another attractive feature of SMC is that we can parallelize the likelihood evaluation
of particles, which is the most computationally demanding part. This algorithm is
executed by the Big Red 200, the supercomputer possessed by Indiana University. With
24 cores, it takes about 26 hours to complete the whole run18.

15Wemay employmachine learning techniques to allow every element of λ to be unrestricted. Although
this extension is beyond the scope of this paper, it might be interesting to investigate howwe can improve
our estimation strategy by incorporating machine learning methods.

16More rigorously, the dataset is constructed following the description by Bianchi and Melosi (2022).
This is because Bianchi and Ilut (2017) relies on the old definition in NIPA, which does not perfectly align
with the currently available NIPA table.

17https://github.com/jmaih/RISE_toolbox
18Big Red 200 equips with 2.25 GHz AMD EPYC 7742 processors.
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6.3. Priors and Calibration

The right columns of Tables 5 and 6 show the prior distributions. Other than the pa-
rameters governing the transition of policy regime, I adopt exactly the same prior as
in Bianchi and Ilut (2017). The persistency of long-term expenditure and its volatility
are fixed at ρeL = 0.99 and σeL = 0.01. The discount factor is set to be β = 0.9965, and
ρ is calibrated to match the average debt maturity of 5 years: ρ = 0.9513. We assume
δb(AF ) = 0.0. For the parameters related to the regime determination, the prior means
of τ pol and ρη imply that the probability of staying in the same regime is 0.85 absent of
the feedback from the endogenous variables. Each element of λ follows the uniform
distribution centered at zero with wide enough ranges so that we do not reflect any
information on signs of the feedback a priori.

6.4. Posteriors

The left columns of Tables 5 and 6 display the posterior distribution of each parameter
for the baseline model and exogenous switching model where the transition probability
of policy regimes is constant. We specify the exogneous switching model by fixing
all λ’s to be zero. Qualitatively, the posterior means are similar to those reported in
Bianchi and Ilut (2017), although there are some quantitative differences between the
two. For example, the coefficients of inflation rate in the regime-switching Taylor rule
are estimated to be lower: 0.2251 vs 0.5343 in PM and 1.8745 vs 2.6787 in AM. The regime
transition probabilities for volatility are close to the estimates in Bianchi and Ilut (2017).
The parameter governing the persistency of the policy regime, ρη, is estimated to be
0.9516, suggesting that the policy regime is likely to stay the same in the subsequent
period in the absence of the feedback.

The baseline model and exogenous switching model give the similar posterior dis-
tribution broadly speaking, while we find disagreement in τ pol, the threshold in the
policy regime rule. This parameter is estimated to be smaller in the baselinemodel than
the exogenous switching model, which suggests that the policy regime is more likely
to be PM/AF in the baseline model. This difference is reflected in the policy regime
probabilities inferred from two models, as we see below.

6.4.1. Feedback Coefficients λ

The posterior mean of λb is positive and its 90% posterior band does not include zero.
This estimate means that the policy regime is more likely to be AM/PF after observing
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TABLE 5. Prior and Posterior Distributions: Part1

Posterior (Baseline) Posterior (Exog. Switch) Prior
Mean 5% 95% Mean 5% 95% Type Para (1) Para (2)

δy 0.2931 0.2387 0.3502 0.2945 0.2393 0.3509 N 0.2 0.2
δe 0.4029 0.2983 0.5060 0.2877 0.1788 0.3911 N 0.5 0.25
ιy 0.0909 -0.1123 0.2965 0.0950 -0.1156 0.3089 N 0.1 0.2
ϕy -0.6181 -0.6800 -0.5571 -0.6052 -0.6714 -0.5397 N 0.1 0.2
ς 0.5242 0.4690 0.5789 0.5044 0.4487 0.5577 B 0.5 0.25
Φ 0.4068 0.3648 0.4486 0.3836 0.3390 0.4269 B 0.5 0.25
κ 0.0016 0.0013 0.0018 0.0015 0.0012 0.0017 G 0.3 0.15
ρχ 0.9955 0.9931 0.9978 0.9954 0.9928 0.9978 B 0.5 0.2
ρa 0.6566 0.5939 0.7189 0.6982 0.6361 0.7597 B 0.5 0.2
ρd 0.9694 0.9651 0.9737 0.9719 0.9675 0.9759 B 0.5 0.2
ρeS 0.1700 0.1271 0.2158 0.1816 0.1353 0.2292 B 0.2 0.05
ρµ 0.0454 0.0189 0.0750 0.0467 0.0191 0.0765 B 0.5 0.2
ρtp 0.2165 0.1497 0.2830 0.2166 0.1445 0.2874 B 0.5 0.2
100π 0.5599 0.5243 0.5943 0.5861 0.5519 0.6194 N 0.5 0.05
100γ 0.4995 0.4595 0.5400 0.5008 0.4599 0.5401 N 0.42 0.05
bm 0.6977 0.6485 0.7453 0.7344 0.6748 0.7938 N 1.0 0.1
g 1.0805 1.0764 1.0845 1.0792 1.0746 1.0838 N 1.08 0.04
τ 0.1716 0.1699 0.1733 0.1709 0.1693 0.1724 N 0.18 0.005

Note: This table describes the posteriormean aswell as the posterior 5 and 95percentiles
for each parameter along with the prior distributions. The characters ‘N’, ‘B’, ‘G’, ‘IG’, and
‘U’ in ‘Type’ refer to normal, beta, gamma, inverse gamma, and uniform distributions
respectively. Except for U, Para (1) and (2) are the prior mean and standard deviation
respectively. For U, those two parameters are the lower and upper bound.

an increase in the debt-to-output ratio in the previous quarter. This feedback channel
can be justified from the optimal policy perspective. Suppose that the policy authority
observes a high debt-to-output ratio when they are taking the PM/AF policy. Under the
PM/AF regime, public debt will be inflated away to satisfy the transversality condition.
High inflation leads to large price dispersion, and it causes welfare loss in the New
Keynesian context. To stabilize the inflation rate, the policy authority has the incentive
to switch to the AM/PF regime. The positively estimated λπ can also be interpreted from
the view that high inflation leads to the combination of hawkish monetary policy and
dovish fiscal policy.

Another parameter regarding the fiscal policy, λτ takes positive posterior mean,
although its 90% posterior band includes zero. The positive point estimate is consistent
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TABLE 6. Prior and Posterior Distributions: Part2

Posterior (Baseline) Posterior (Exog. Switch) Prior
Mean 5% 95% Mean 5% 95% Type Mean Std

ψπ(PM) 0.2251 0.1584 0.2942 0.2325 0.1704 0.2986 G 0.8 0.3
ψπ(AM) 1.8745 1.4786 2.2771 1.7605 1.3634 2.1701 N 2.5 0.5
ψy(PM) 0.2125 0.1884 0.2370 0.1875 0.1671 0.2088 G 0.15 0.1
ψy(AM) 1.0368 0.8386 1.2490 1.0929 0.8938 1.3004 G 0.4 0.2
ρR(PM) 0.7395 0.7057 0.7710 0.6755 0.6390 0.7137 B 0.5 0.2
ρR(AM) 0.8559 0.8319 0.8787 0.8674 0.8449 0.8885 B 0.5 0.2
δb(PF ) 0.0498 0.0368 0.0634 0.0470 0.0340 0.0607 G 0.07 0.02
ρτ (AF ) 0.8154 0.7705 0.8609 0.7921 0.7406 0.8417 B 0.5 0.2
ρτ (PF ) 0.9799 0.9707 0.9885 0.9779 0.9679 0.9870 B 0.5 0.2
100σR(1) 0.0732 0.0673 0.0789 0.0725 0.0662 0.0790 IG 0.5 0.5
100σR(2) 0.3743 0.3364 0.4134 0.3900 0.3463 0.4354 IG 0.5 0.5
100σχ(1) 1.9554 1.8201 2.0970 1.9874 1.8320 2.1505 IG 1.0 1.0
100σχ(2) 4.6480 4.1861 5.1357 4.7152 4.2359 5.2266 IG 1.0 1.0
100σa(1) 0.3829 0.3311 0.4355 0.3498 0.2991 0.4013 IG 1.0 1.0
100σa(2) 0.6981 0.5602 0.8410 0.6184 0.4991 0.7438 IG 1.0 1.0
100στ (1) 0.2582 0.2400 0.2768 0.2548 0.2359 0.2745 IG 2.0 2.0
100στ (2) 0.7366 0.6653 0.8094 0.7310 0.6557 0.8115 IG 2.0 2.0
100σd(1) 6.2614 5.6140 6.9122 6.5964 5.9123 7.3294 IG 10.0 2.0
100σd(2) 10.7919 9.4271 12.2127 10.9300 9.5206 12.4497 IG 10.0 2.0
100σeS(1) 0.2256 0.1905 0.2616 0.2257 0.1908 0.2637 IG 2.0 2.0
100σeS(2) 0.3872 0.3103 0.4661 0.3877 0.3052 0.4727 IG 2.0 2.0
100σtp(1) 2.5930 2.4328 2.7597 2.5849 2.4203 2.7555 IG 1.0 1.0
100σtp(2) 3.3134 2.9318 3.7040 3.3227 2.9250 3.7285 IG 1.0 1.0
100σµ(1) 0.1438 0.1305 0.1567 0.1369 0.1259 0.1484 IG 1.0 1.0
100σµ(2) 0.2616 0.2303 0.2947 0.2739 0.2435 0.3064 IG 1.0 1.0
pvol1,2 0.0911 0.0686 0.1140 0.1013 0.0763 0.1277 B 0.17 0.1
pvol2,1 0.2284 0.1670 0.2928 0.2482 0.1857 0.3164 B 0.17 0.1
τ pol -11.9810 -14.1410 -9.8778 -1.6169 -5.1271 1.6398 U -50.0 50.0

0.01λy -0.6144 -1.0558 -0.1975 — — — U -10.0 10.0
0.01λτ 0.6545 -0.1323 1.5137 — — — U -10.0 10.0
0.01λπ 1.7754 0.2565 3.3060 — — — U -10.0 10.0
0.01λR 1.2554 0.3728 2.1370 — — — U -10.0 10.0
0.01λb 0.0539 0.0390 0.0697 — — — U -10.0 10.0
ρη 0.9516 0.9325 0.9702 0.9935 0.9891 0.9973 B 0.9 0.05

Note: See the footnote for Table 5.
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with the view that the fiscal authority cares fiscal discipline in the passive fiscal policy
regime. The point estimate of λR being positive is associatedwith the fact that aggressive
monetary policy usually comes with high interest rate.

The relationship of policy regime and business cycle is captured by λy. This pa-
rameter is point-estimated to be negative, which implies that expansion, i.e., positive
output gap, is tied to the PM/AF regime. Although associating expansion (recession)
with accommodate (contractionary) policy regime seems to be counterintuitive, it is
not necessarily the case. For example, the hawkish monetary policy under Paul Volcker
as a chair of Federal Reserve took place even after entering the recession.

6.5. Regime Probability

Figure 1 reports the updated regime probabilities at the posterior mean for our baseline
model (top two panels) and exogenous switching model (bottom two panels). The first
and third panels plot the probability of AM/PF regime,while the second and fourth panel
plot the probability of high volatility regime. Two models give the similar probabilities
of volatility regime. A part of the reasons is related to our specification: We assume
exogenous switching for macroeconomic volatility even in the endogenous switching
model. We see the rise in uncertainty around the first oil crisis in the early 1970s, the
appointment of Volcker as the Fed chairman (around 1980), the collapse of the Dot-Com
bubble (around 2000), and the Great Recession (around the end of sample).

Turning to the policy regime, the two figures share some characteristics. We observe
the PM/AF policy at 1960s and 70s. In the early 1980s, themacroeconomic policy switches
to AM/PF and stays there by around 2000. We finally come back to the AM/PF regime
at the end of sample. The notable differences appear in the mid 1950s and mid 1960s
when we do not observe the AM/PF regime in the baseline model while we do in the
exogenous switching model, and early-to-mid 2000s when the PM/AF policy takes place
in the baseline model while we stay in the AM/PF regime in the exogenous switching
model.

In the mid 1950s, fiscal policy returned to normalcy after the Korean war by cutting
down defense expenditure. On the monetary policy side, “[t]he Fed might well have
intended to be vigilant against inflation, but it appears not to have acted to prevent the
1955 inflation”, as described by Davig and Leeper (2006). These narratives convince us to
categorize this period as the PM/PF regime. The baseline (exogenous switching) model
captures the PF (PM) nature in the regime probability. The policy stance in the mid
1960s is also mixed. The increase in the Federal funds rate was related to the concern to
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FIGURE 1. Updated Regime Probabilities from Baseline Model (Top Panel) and Exoge-
nous Switching Model (Bottom Panel)
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surging inflation due mainly to escalated fiscal spending related to the Vietnam war.
There was a conflict between contractionary monetary policy and expansionary fiscal
policy (Blinder 2022), which might have caused instability in the regime probability in
the exogenous switching model.

The narrative episodes are in favor the PM/AF regime in the pre Great Recession.
The policy rate was kept low to help the US economy recover from the Dot-Com bubble
collapse in the early 2000s. The expansionary monetary policy is accompanied with
George Bush’s tax cut in 2002 and 2004. The high probability of the PM/AF regime
from the baseline model aligns better with such historical accounts compared with the
probability from the exogenous switching model.

6.6. Forecasting

The endogenous regime switching model is useful especially in the context of forecast-
ing. Unlike the exogenous switching model where the regime transition probabilities
are time-invariant, the framework presented here is able to predict the regime transition
probability, improving the forecasting performance around the time of regime change.

6.6.1. Transition Probability

Figure 2 shows the transition probability p(st|st−1,Ft−1) and the updated regime prob-
ability of AM/PF regime p(st = AM/PF | Ft). The left panel plots the probability
of staying in AM/PF regime for the baseline model (solid line labeled “Endo”) and
the exogenous switching model (dashed line labeled “Exog”) and the AM/PF regime
probability (dotted line). By construction, the exogenous switching model exhibits the
flat transition probability. In contrast, the transition probability under the baseline
model decreases at 2001Q3, indicating that the regime likely to switch from the AM/PF
to PM/AF. Indeed, this is the quarter when the policy stance changes from AM/PF to
PM/AF according to the regime probability. Our baseline model succeeds in predicting
the policy regime change at that period.

The right panel plots the probability of staying in PM/AF regime along with the
AM/PF regime probability. Although the regime switching occurs at 2008Q4, the drop
in transition probability happens 2009Q1. Such a lagged response in the transition
probability happens due to the different information treatment in these probabilities.
We predict the transition probability based on the information up to period t− 1, while
the regime probability is calculatedwith the information up to period t. This implies that
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FIGURE 2. Transition Probability

Note: The left panel plots the transition probability from AM/PF at time t− 1 to AM/PF
at time t, for baseline (“Endo”) and exogenous switching (“Exog”) models along with
the updated AM/PF probability in 2001Q1-2002Q1. The right panel plots the transition
probability from PM/AF at time t− 1 to PM/AF at time t along with the updated AM/PF
probability in 2008Q2-2009Q2. For both panels, the left axis corresponds to the transition
probability, and the right axis corresponds to the regime probability.

shocks happening at 2008Q4 were so extreme to invoke regime switching, which cannot
be predicted by the information we have at 2008Q3. After we update the information at
2008Q4, we predict the low probability of staying in PM/AF at 2009Q1.

6.6.2. Real-Time Forecasting of GDP Growth and Inflation

The availability of prediction on regime transition probability improves the forecasting
performance of economic variables as well. To see this, we conduct the real time
forecasting exercise: Given the information available at those periods, we use the
models to forecast real GDP growth and inflation rate. Figure 3 shows the 4-quarter-
ahead real time forecast of GDP growth and inflation rate at two periods just before
the regime switching: 1983Q4 (upper panels) and 2001Q2 (lower panels). The forecast
generated by the baseline model (solid line labeled “Endo”) predicts the variables better
than those generated by the exogenous switching model (dashed line labeled “Exog”),
especially at short horizon. The baseline model is able to capture changes in transition
probability, a feature absent in the exogenous switching model. This helps the baseline
model to make more accurate prediction.

34



FIGURE 3. Real-Time Forecasting

Note: 4-quarter-ahead forecast of GDP growth and inflation rate given the information
at 1983Q4 (upper panels) and 2001Q2 (lower panels).

7. Conclusion

This paper develops state space models with regime-switching coefficients allowing
for the feedback from lagged continuous state variables into regime determination. I
incorporate such a regime rule into the regime-switching Kalman filter and show that
regime transition probabilities are given by functions of updated distributions of the
state variables.

To circumvent the path dependence problem, we need to truncate the history of
regimes we keep track of. I firstly prove that the likelihood from the filter with such a
truncation step is asymptotically equivalent to the one from the exact filter if we increase
the number of periods to take into account as the sample length grows. The second set
of econometric claims concerns the consistency of the maximum likelihood estimator.

35



Consistency can be established for regime transition probabilities more general than
the proposed ones. These results are confirmed in the simulation exercises using two
types of data generating processes, a simple univariate model and a model mimicking
the small-scale New Keynesian model.

I finally study the monetary/fiscal policy mix in the post-war U.S. using the regime-
switching DSGE model with the proposed regime determination rule. By capturing
changes in regime transition probability, we can make a better forecast especially at
the times when a regime change is likely to happen.

The framework proposed in this paper can be applied in other models as well, such
as the regime-switching DSGE models studying financial friction or macroeconomic
volatility. These applications seem to be promising and are left for future work.

References

An, Sungbae and Frank Schorfheide (2007) “Bayesian Analysis of DSGE Models,” Econometric
Reviews, 26 (2-4), 113–172.

Aruoba, Borağan S, Pablo Cuba-Borda, and Frank Schorfheide (2018) “Macroeconomic Dynamics
near the ZLB: A Tale of Two Countries,” The Review of Economic Studies, 85 (1), 87–118.

Ascari, Guido, Paolo Bonomolo, and Qazi Haque (2022) “The Long-Run Phillips Curve Is... a
Curve.”

Auerbach, Alan J and Yuriy Gorodnichenko (2012) “Measuring The Output Responses to Fiscal
Policy,” American Economic Journal: Economic Policy, 4 (2), 1–27.

Benigno, Gianluca, Andrew Foerster, Christopher Otrok, and Alessandro Rebucci (2020) “Es-
timating Macroeconomic Models of Financial Crises: An Endogenous Regime-Switching
Approach.”

Bhatia, Rajendra (1997)Matrix Analysis: Springer.
Bianchi, Francesco (2012) “Evolving Monetary/Fiscal Policy Mix in the United States,” American

Economic Review, 102 (3), 167.
Bianchi, Francesco and Cosmin Ilut (2017) “Monetary/Fiscal Policy Mix and Agents’ Beliefs,”

Review of Economic Dynamics, 26, 113–139.
Bianchi, Francesco, Cosmin L Ilut, and Martin Schneider (2018) “Uncertainty shocks, Asset

Supply and Pricing over the Business Cycle,” Review of Economic Studies, 85 (2), 810–854.
Bianchi, Francesco and Leonardo Melosi (2017) “Escaping the Great Recession,” American Eco-

nomic Review, 107 (4), 1030–58.
(2022) “Inflation as a Fiscal Limit,” Jackson Hole Symposium.

Blinder, Alan S (2022) A Monetary and Fiscal History of the United States, 1961-2021: Princeton
University Press.

Chang, Yoosoon, Yongok Choi, and Joon Y Park (2017) “A New Approach to Model Regime
Switching,” Journal of Econometrics, 196 (1), 127–143.

Chang, Yoosoon, Junior Maih, and Fei Tan (2021) “Origins of Monetary Policy Shifts: A New

36



Approach to Regime Switching in DSGE Models,” Journal of Economic Dynamics and Control,
133, 104235.

Cochrane, John H (2023) The Fiscal Theory of the Price Level: Princeton University Press.
Davig, Troy and Eric M Leeper (2006) “Endogenous Monetary Policy Regime Change,” in NBER

International Seminar on Macroeconomics, 2006, 345–391, The University of Chicago Press
Chicago, IL.

Diebold, Francis X., Joon-Haeng Lee, and Gretchen C. Weinbach (1994) “Regime Switching
with Time-Varying Transition Probabilities,” in Hargreaves, Colin P. ed. Nonstationary Time
Series Analysis and Cointegration. (Advanced Texts in Econometrics), 283–302, Oxford: Oxford
University Press.

Douc, Randal and Eric Moulines (2012) “Asymptotic Properties of the Maximum Likelihood
Estimation in Misspecified Hidden Markov Models,” Annals of Statistics, 40 (5), 2697–2732.

Douc, Randal, Eric Moulines, and Tobias Rydén (2004) “Asymptotic Properties of the Maximum
Likelihood Estimator in Autoregressive Models with Markov Regime,” Annals of Statistics, 32
(5), 2254–2304.

Galí, Jordi (2015)Monetary Policy, Inflation, and the Business Cycle: An Introduction to the New
Keynesian Framework and Its Applications: Princeton University Press.

Hamilton, James D (1989) “A New Approach to the Economic Analysis of Nonstationary Time
Series and the Business Cycle,” Econometrica, 57 (2), 357–384.

(1994) Time Series Analysis: Princeton University Press.
(2016) “Macroeconomic Regimes and Regime Shifts,”Handbook of Macroeconomics, 2,

163–201.
Herbst, Edward and Frank Schorfheide (2014) “Sequential Monte Carlo Sampling for DSGE

Models,” Journal of Applied Econometrics, 29 (7), 1073–1098.
(2016) Bayesian Estimation of DSGE Models: Princeton University Press.

Ipsen, Ilse C. F. and Rizwana Rehman (2008) “Perturbation Bounds for Determinants and Char-
acteristic Polynomials,” SIAM Journal on Matrix Analysis and Applications, 30 (2), 762–776.

Jazwinski, Andrew H (1970) Stochastic Processes and Filtering Theory: Academic Press.
Kasahara, Hiroyuki and Katsumi Shimotsu (2019) “Asymptotic Properties of the Maximum

Likelihood Estimator in Regime Switching Econometric Models,” Journal of Econometrics,
208 (2), 442–467.

Kim, Chang-Jin (1994) “Dynamic Linear Models with Markov-Switching,” Journal of Econometrics,
60 (1-2), 1–22.

Kim, Young Min and Kyu Ho Kang (2019) “Likelihood Inference for Dynamic Linear Models with
Markov Switching Parameters: On the Efficiency of the Kim Filter,” Econometric Reviews, 38
(10), 1109–1130.

Leeper, Eric M (1991) “Equilibria under ‘Active’ and ‘Passive’ Monetary and Fiscal Policies,”
Journal of Monetary Economics, 27 (1), 129–147.

Li, Chaojun (2023) “Asymptotic Properties of Approximated Maximum Likelihood Estimator in
Markov-Switching State-Space Models,” Unpublished.

Li, Chaojun and Yan Liu (2023) “Asymptotic Properties of the Maximum Likelihood Estimator
in Regime-Switching Models with Time-Varying Transition Probabilities,” The Econometrics

37



Journal, 26 (1), 67–87.
Liu, Zheng, Daniel F Waggoner, and Tao Zha (2011) “Sources of Macroeconomic Fluctuations: A

Regime-Switching DSGE Approach,” Quantitative Economics, 2 (2), 251–301.
Maih, Junior and Daniel Waggoner (2018) “Perturbation Methods for DSGE Models with Time-

Varying Coefficients and Transition Matrices.”
Nimark, Kristoffer P (2014) “Man-bites-dog Business Cycles,” American Economic Review, 104 (8),

2320–2367.
Pouzo, Demian, Zacharias Psaradakis, and Martin Sola (2022) “Maximum Likelihood Estimation

in Markov Regime-Switching Models With Covariate-Dependent Transition Probabilities,”
Econometrica, 90 (4), 1681–1710.

38



Appendix A. Filter for Regime-Switching State Space Model

The regime-switching state space model is given by

xt = Astxt−1 +Qstεt

yt = Bstxt +Rstut

where ut and εt are independent and follow the standard Gaussian. We assume that (yt)
is observed while (xt) is not. The regime st is determined by

st = 1 {τ + λ′xt−1 + ηt ≥ 0}

To derive the transition probability at time t, we need the conditionalmean and variance
of xt−2 given Ft−1. To calculate this, we consider the lag-augmented state space model
instead of the original model.[

xt

xt−1

]
=

[
Ast O

I O

][
xt−1

xt−2

]
+

[
Qst

O

]
εt

yt =
[
Bst O

] [ xt

xt−1

]
+Rstut

We re-define xt = [x′t, x
′
t−1]

′, and so forth. Below is the algorithm to compute the approx-
imated likelihood with the regime truncation. As is in the main text, we use the upper
bar and subscript r to emphasize that the objects are coming from the truncated filter.

• Initialization: Set x̄1|1(i) and Ω̄1|1(i) for i = 0, 1. We also set the initial regime proba-
bility pr(s1 = i) for i = 0, 1.

• For t = 2, · · · , T ,

(i) Forecasting Step
x̄t|t−1(s

t
t−r+1) = Astx̄t−1|t−1(s

t−1
t−r+1) (A1)

Ω̄t|t−1(s
t
t−r+1) = AstΩ̄t−1|t−1(s

t−1
t−r+1)A

′
st +QstQ

′
st (A2)

ȳt|t−1(s
t
t−r+1) = Bstx̄t|t−1(s

t
t−r+1) (A3)

Σ̄t|t−1(s
t
t−r+1) = BstΩ̄t|t−1(s

t
t−r+1)B

′
st +RstR

′
st (A4)
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(ii) Calculating Likelihood

pr(yt|Ft−1) =
∑
stt−r+1

pr(yt|stt−r+1,Ft−1)pr(st|st−1
t−r+1,Ft−1)pr(s

t−1
t−r+1|Ft−1) (A5)

The first part is given by yt|stt−r+1,Ft−1 ∼ N
(
ȳt|t−1(s

t
t−r+1), Σ̄t|t−1(s

t
t−r+1)

)
. The

third part is obtained from equation (A8) in the previous iteration. The sec-
ond part is the transition probability from st−1

t−r+1 to st conditional on the
information set Ft−1, which will be elaborated on later.

(iii) Updating step

x̄t|t(s
t
t−r+1)

=x̄t|t−1(s
t
t−r+1) + Ω̄t|t−1(s

t
t−r+1)B

′
st

[
Σ̄t|t−1(s

t
t−r+1)

]−1 (
yt − ȳt|t−1(s

t
t−r+1)

) (A6)
Ω̄t|t(s

t
t−r+1)

=Ω̄t|t−1(s
t
t−r+1)− Ω̄t|t−1(s

t
t−r+1)B

′
st

[
Σ̄t|t−1(s

t
t−r+1)

]−1
BstΩ̄t|t−1(s

t
t−r+1)

(A7)

and
pr(s

t
t−r+2|Ft) =

∑
st−r+1

pr(s
t
t−r+1|Ft) (A8)

where
pr(s

t
t−r+1|Ft) =

pr(yt|stt−r+1,Ft−1)pr(s
t
t−r+1|Ft−1)

pr(yt|Ft−1)
(A9)

(iv) Truncation

x̄t|t(s
t
t−r+2) =

∑
st−r+1

pr(s
t
t−r+1|Ft)

pr(stt−r+2|Ft)
x̄t|t(s

t
t−r+1) (A10)

Ω̄t|t(s
t
t−r+2) =

∑
st−r+1

pr(s
t
t−r+1|Ft)

pr(stt−r+2|Ft)
Ω̄t|t(s

t
t−r+1) (A11)

REMARK A1. When r = 1, stt−r+2 is not well defined. In this context, we drop (A8) and write
(A1), (A2), (A10), and (A11) to be

x̄t|t−1(st) = Astx̄t−1|t−1

Ω̄t|t−1(st) = AstΩ̄t−1|t−1A
′
st +QstQ

′
st

x̄t|t =
∑
st

pr(st|Ft)x̄t|t(st)

Ω̄t|t =
∑
st

pr(st|Ft)Ω̄t|t(st)
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REMARK A2. Kim (1994) includes the second order adjustment term in (A11). As in Li (2023),
we ignore that term because whether this additional term improves the approximation is not
theoretically very clear, and the presence of the nonlinear term complicates our asymptotic
analysis. As far as the simulation exercise tells, the approximation will be slightly improved
by the inclusion of the second order term although the improvement is not drastic.

A.1. Transition Probability

A.1.1. i.i.d. Gaussian Error

We assume the i.i.d. Gaussian error term: ηt ∼ N(0, 1). We are interested in evaluating
the transition probability, the second term in equation (A5).

pr(st = 0|st−1 = 0, st−2
t−r+1,Ft−1)

=
pr
(
st = 0, st−1 = 0 | st−2

t−r+1,Ft−1

)
pr
(
st−1 = 0 | st−2

t−r+1,Ft−1

)
=

∫
pr(st = 0, st−1 = 0|xt−1, s

t−2
t−r+1,Ft−1)pr

(
xt−1|st−2

t−r+1,Ft−1

)
dxt−1∫

pr(st−1 = 0|xt−1, s
t−2
t−r+1,Ft−1)pr

(
xt−1|st−2

t−r+1,Ft−1

)
dxt−1

≈
Φ
(
−τι; Λx̄t−1|t−1(s

t−2
t−r+1), I + ΛΩ̄t−1|t−1(s

t−2
t−r+1)Λ

′)
Φ
(
−τ ;λ′

(
x̄t−1|t−1(s

t−2
t−r+1)

)
(dx+1:2dx)

, 1 + λ′
(
Ω̄t−1|t−1(s

t−2
t−r+1)

)
(dx+1:2dx,dx+1:2dx)

λ
)

where ι is a vector whose elements are all one, Λ =

[
λ′ 0

0 λ′

]
is a 2 × 2dx matrix,(

x̄t−1|t−1(s
t−2
t−r+1)

)
(dx+1:2dx)

is a sub-vector of x̄t−1|t−1(s
t−2
t−r+1) consisting of its (d+ 1)-th to

2dx-th elements, and
(
Ω̄t−1|t−1(s

t−2
t−r+1)

)
(dx+1:2dx,dx+1:2dx)

is a sub-matrix of Ω̄t−1|t−1(s
t−2
t−r+1)

consisting of (dx + 1)-th to 2dx-th rows and columns. The conditional state mean and
variance given st−2

t−r+1 are computed as

x̄t−1|t−1(s
t−2
t−r+1) =

∑
st−1

pr
(
st−1, s

t−2
t−r+1|Ft−1

)
pr
(
st−2
t−r+1|Ft−1

) x̄t−1|t−1(st−1, s
t−2
t−r+1)

Ω̄t−1|t−1(s
t−2
t−r+1) =

∑
st−1

pr
(
st−1, s

t−2
t−r+1|Ft−1

)
pr
(
st−2
t−r+1|Ft−1

) Ω̄t−1|t−1(st−1, s
t−2
t−r+1)
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Analogously, the transition probability from st−1 = 1 to st = 1 is given by

pr(st = 1|st−1 = 1, st−2
t−r+1,Ft−1)

≈
Φ
(
τι;−Λx̄t−1|t−1(s

t−2
t−r+1), I + ΛΩ̄t−1|t−1(s

t−2
t−r+1)Λ

′)
Φ
(
τ ;−λ′

(
x̄t−1|t−1(s

t−2
t−r+1)

)
(dx+1:2dx)

, 1 + λ′
(
Ω̄t−1|t−1(s

t−2
t−r+1)

)
(dx+1:2dx,dx+1:2dx)

λ
)

The remaining probabilities are

pr(st = 1|st−1 = 0, st−2
t−r+1,Ft−1) =1− pr(st = 0|st−1 = 0, st−2

t−r+1,Ft−1)

pr(st = 0|st−1 = 1, st−2
t−r+1,Ft−1) =1− pr(st = 1|st−1 = 1, st−2

t−r+1,Ft−1)

A.2. Extension to Serially Correlated Error

Suppose that ηt follows AR(1), i.e., ηt = ρηt−1 + et where et ∼ N(0, 1). The unconditional
distribution of [ηt, ηt−1]

′ is given by[
ηt

ηt−1

]
∼ N

(
0,

[
1

1−ρ2
ρ

1−ρ2
ρ

1−ρ2
1

1−ρ2

])

Let Ση denote the variance-covariance matrix. Then, the transition probability is

pr(st = 0|st−1 = 0, st−2
t−r+1,Ft−1)

≈
Φ
(
−τι;λ′x̄t−1|t−1(s

t−2
t−r+1),Ση + ΛΩ̄t−1|t−1(s

t−2
t−r+1)Λ

′)
Φ
(
−τ ;λ′

(
x̄t−1|t−1(s

t−2
t−r+1)

)
(dx+1:2dx)

, 1
1−ρ2 + λ′

(
Ω̄t−1|t−1(s

t−2
t−r+1)

)
(dx+1:2dx,dx+1:2dx)

λ
)

When implementing this filter computationally, the RISE requires the transition
probability given xt−1. Then, the transition probability of interest is given as

p(st = 0|st−1 = 0, xt−1) =
p(st = 0, st−1 = 0|xt−1)

p(st−1 = 0|xt−1)

=
p([ηt, ηt−1]

′ ≤ −τι− Λxt−1|xt−1)

p(ηt−1 ≤ −τ − λ′xt−2|xt−1)

=
Φ (−τι− Λxt−1; 0,Ση)

Φ(−τ − λ′xt−2; 0, (1− ρ2)−1)

and
p(st = 1|st−1 = 1, xt−1) =

Φ (τι+ Λxt−1; 0,Ση)

Φ (τ + λ′xt−2; 0, (1− ρ2)−1)
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Appendix B. Proofs

B.1. Proofs for Section 3

B.1.1. Auxiliary Lemmas

LEMMA A1. Assume Assumptions 1 and 2. There exist positive constants c+Ω and c
−
Ω such that

c−Ω ≤ ∥Ωt|t(s
t
1)∥ ≤ c+Ω for any st1 ∈ {0, 1}t.

PROOF. Let α = min{αUCO, αUCC} and β = max{βUCO, βUCC}. Lemmas 7.1 and 7.2 in
Jazwinski (1970) show α

1+αβ
I ≤ Ωt|t(s

t
1) ≤

1+αβ
α
I. Taking the matrix norm for both hand

sides establishes our claim.

LEMMA A2. Assume Assumptions 1 and 2. There exist a positive constant cx such that for
any t = 1, 2, · · · ,

E0

∥∥xt|t(st1)∥∥ ≤ cx

for any st1 ∈ {0, 1}t.

PROOF. The transition of xt|t is characterized as

∥xt|t(st1)∥ =
∥∥(I −K(st1)Bst)Astxt−1|t−1(s

t−1
1 ) +K(st1)yt

∥∥
≤ · · ·

≤
∥∥Ψt(st1)

∥∥ ∥x̃∥+ t∑
i=1

∥∥Ψi−1(st1)
∥∥ · ∥∥K(st−i+1

1 )
∥∥ · ∥yt−i+1∥

Note that for any t, ∥K(st1)∥ ≤ ∥Ωt−1|t−1(s
t−1
1 )∥·∥Bst∥·∥(RstR

′
st)

−1∥ ≤ cΩ·maxs∈{0,1}{∥Bs∥·
∥(RsR

′
s)

−1∥} ≡ cK . Taking expectations for both hand sides of the inequality above and
applying Lemma 1 yield

E0∥xt|t(st1)∥ ≤
∥∥Ψt(st1)

∥∥ ∥x̃∥+ t∑
i=1

∥∥Ψi−1(st1)
∥∥ · ∥∥K(st−i+1

1 )
∥∥ · E0 ∥yt−i+1∥

≤c1 exp(−c2)∥x̃∥+ cKµy
exp(c2)

exp(c2)− 1
≡ cx

where µy = E0∥yt∥ for any t due to the stationarity.

Note that Lemmas 1, A1 and A2 hold for the objects from the truncated filter as well.
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LEMMA A3. Let Ω0 and Ω1 be positive definite matrices. Let Ki = ΩiB
′ (BΩiB

′ +RR′)−1

for i = 0, 1, where B and R are matrices with comfortable sizes. Then,

∥K0 −K1∥ ≤ ∥Ω0 − Ω1∥ · ∥B∥ · ∥(RR′)−1∥
[
1 + ∥B∥ · ∥(RR′)−1∥ · (∥B∥+ ∥Ω0 − Ω1∥)

]

PROOF. We employ (A + BCB′)−1 = A−1 − A−1B(C−1 + B′A−1B)−1B′A−1. It follows
that

K0 =Ω0B
′ [(BΩ1B

′ +RR) +B(Ω0 − Ω1)B
′]
−1

=(Ω1 + (Ω0 − Ω1))B
′
[
(BΩ1B

′ +RR)
−1

− (BΩ1B
′ +RR)

−1
B
(
(Ω0 − Ω1)

−1 +B′ (BΩ1B
′ +RR)

−1
B
)−1

B′ (BΩ1B
′ +RR)

−1

]
=(Ω1 + (Ω0 − Ω1)) Ω

−1
1

[
K1 −K1B

(
(Ω0 − Ω1)

−1 +B′ (BΩ1B
′ +RR)

−1
B
)−1

Ω−1
1 K1

]
=K1 + (Ω0 − Ω1)Ω

−1
1 K1

− (I + (Ω0 − Ω1)Ω
−1
1 )K1B

(
(Ω0 − Ω1)

−1 +B′ (BΩ1B
′ +RR)

−1
B
)−1

Ω−1
1 K1

Note that ∥A−1∥ = λmin(A) for an invertible matrix A where λmin(A) is the smallest
eigenvalue of A. Note also that for two positive semi-definite n× nmatrices A and B,
we have λi(A+B) ≥ λi(A) for i = 1, · · · , n where λi(A) is the i-th largest eigenvalue of
A. Then, ∥(A+B)−1∥ ≤ ∥A−1∥. Therefore, we have

∥K0 −K1∥

≤∥Ω0 − Ω1∥ · ∥Ω−1
1 K1∥

+
∥∥(I + (Ω0 − Ω1)Ω

−1
1 )K1B

∥∥ · ∥∥∥∥((Ω0 − Ω1)
−1 +B′ (BΩ1B

′ +RR)
−1
B
)−1
∥∥∥∥ · ∥Ω−1

1 K1∥

≤∥Ω0 − Ω1∥ · ∥B∥ · ∥(RR′)−1∥

+
(
∥B∥2∥(RR′)−1∥+ ∥Ω0 − Ω1∥ · ∥B∥ · ∥(RR′)−1∥

)
· ∥Ω0 − Ω1∥ · ∥B∥ · ∥(RR′)−1∥

LEMMA A4 (Corollary 2.14 in Ipsen and Rehman (2008)). Let A and E be n× nmatrices.
If A is nonsingular, then

det(A+ E)− det(E)

det(A)
≤
(
1 + ∥A−1∥ × ∥E∥

)n − 1
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LEMMA A5 (Equation (X.2) in Bhatia (1997)). For 0 ≤ r ≤ 1 and positive semidefinite
matrices A and B,

∥Ar −Br∥ ≤ ∥A−B∥r

LEMMA A6. For any x ∈ R and ε ≥ 0, we have Φ1(x+ ε)− Φ1(ε) ≤ ε.

PROOF. By the mean value theorem, there exists x∗ ∈ [x, x+ ε] such that Φ1(x+ ε) =

Φ1(x) + ϕ1(x
∗)ε. The statement follows upon noticing ϕ1(x

∗) < 1.

B.1.2. UpdatedMean and Variance

We first provide two preliminary lemmas necessary to show the asymptotic negligibility
of the difference between the truncated and exact updated mean and variance.

LEMMA A7. Assume Assumptions 1 and 2. For t ≥ r, define

δΩt (s
t
t−r+2, s

t−r
1 )

= max
i,j∈{0,1}

∥Ωt|t(s
t
t−r+2, i, s

t−r
1 )− Ωt|t(s

t
t−r+2, j, s

t−r
1 )∥

There exists positive constants cδ and c2 such that

max
st,··· ,st−r+2,st−r,··· ,s1

δΩt (s
t
t−r+2, s

t−r
1 ) ≤ cδ exp(−2c2(r − 1))

PROOF. Take any i, j ∈ {0, 1}, and st, · · · , st−r+2, st−r, · · · , s1. For τ = t− r+1, · · · , t, let
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sτ1⟨i⟩ = (sτ , · · · , st−r+2, i, st−r, · · · , s1). It follows from Lemmas A1 and 1 that

δΩt (s
t
t−r+2, s

t−r
1 )

=
∥∥(I −K(st1⟨i⟩)Bst)Ast

×
(
Ωt−1|t−1(s

t
1⟨i⟩)− Ωt−1|t−1(s

t
1⟨j⟩)

)
× A′

st(I −K(st1⟨j⟩)Bst)
′∥∥

≤ · · ·

≤
∥∥Ψr−1(st1⟨i⟩)

∥∥ · ∥∥Ψr−1(st1⟨j⟩)
∥∥

×
∥∥Ωt−r+1|t−r+1(st−r+1 = i, st−r1 )− Ωt−r+1|t−r+1(st−r+1 = j, st−r1 )

∥∥
≤c21 exp(−2c2(r − 1))

∥∥Ωt−r+1|t−r+1(st−r+1 = i, st−r1 )− Ωt−r+1|t−r+1(st−r+1 = j, st−r1 )
∥∥

≤cδ exp(−2c2(r − 1))

where cδ = 2c21c
+
Ω.

LEMMA A8. Assume Assumptions 1 and 2. For t ≥ r, define

δxt (s
t
t−r+2, s

t−r
1 )

= max
i,j∈{0,1}

∥∥xt|t(stt−r+2, i, s
t−r
1 )− xt|t(st, · · · , st−r+2, j, s

t−r
1 )
∥∥

A stochastically bounded positive random variablemt and a positive constant c2 exist such
that

max
st,··· ,st−r+2,st−r,··· ,s1

δxt (s
t
t−r+2, s

t−r
1 ) ≤ exp(−c2(r − 1))mt

PROOF. Take any i, j ∈ {0, 1} and st, · · · , st−r+2, st−r, · · · , s1. We introduce another up-
dated mean at time t constructed in the following way. At time t− r + 1, the updated
mean and variance are given by xt−r+1|t−r+1(st−r+1 = j, st−r1 ) and Ωt−r+1|t−r+1(st−r+1 =

i, st−r1 ). Using them, we evaluate the Kalman recursion up to time t where the sequence
of regimes is given by (st, · · · , st−r+2). We denote this alternative updated mean by
x∗t|t(s

t
t−r+2, s

t−r
1 ). We can decompose δxt (·) as

δxt (s
t
t−r+2, s

t−r
1 ) ≤

∥∥xt|t(st1⟨i⟩)− x∗t|t(s
t
t−r+2, s

t−r
1 )
∥∥+∥∥x∗t|t(stt−r+2, s

t−r
1 )− xt|t(s

t
1⟨j⟩)

∥∥ (A12)
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The first term can be evaluated as∥∥xt|t(st1⟨i⟩)− x∗t|t(s
t
t−r+2, s

t−r
1 )
∥∥

≤
∥∥Ψr−1(st1⟨i⟩)

∥∥× ∥∥xt−r+1|t−r+1(st−r+1 = i, st−r1 )− xt−r+1|t−r+1(st−r+1 = j, st−r1 )
∥∥

≤ exp(−c2(r − 1))m1,t

(A13)

wherem1,t = c1∥xt−r+1|t−r+1(st−r+1 = i, st−r1 )−xt−r+1|t−r+1(st−r+1 = j, st−r1 )∥. We decom-
pose the second term of (A12) as∥∥x∗t|t(stt−r+2, s

t−r
1 )− xt|t(s

t
1⟨j⟩)

∥∥
=
∥∥(Ψr−1(st1⟨i⟩)−Ψr−1(st1⟨j⟩)

)
xt−r+1|t−r+1(st−r+1 = j, st−r1 )

+
r−1∑
k=1

(
Ψk−1(st1⟨i⟩)K

(
st−k+1
1 ⟨i⟩

)
−Ψk−1(st1⟨j⟩)K

(
st−k+1
1 ⟨j⟩

))
yt−k+1

∥∥∥∥∥
≤
∥∥Ψr−1(st1⟨i⟩)−Ψr−1(st1⟨j⟩)

∥∥× ∥∥xt−r+1|t−r+1(st−r+1 = j, st−r1 )
∥∥

+
r−1∑
k=1

∥∥(Ψk−1(st1⟨i⟩)K
(
st−k+1
1 ⟨i⟩

)
−Ψk−1(st1⟨j⟩)K

(
st−k+1
1 ⟨j⟩

))∥∥× ∥yt−k+1∥

(A14)

The first term is bounded by 2c1 exp(−c2(r− 1)) · ∥xt−r+1|t−r+1(st−r+1 = j, st−r1 )∥. Taking
a further look at the second term,

Ψk−1(st1⟨i⟩)K
(
st−k+1
1 ⟨i⟩

)
−Ψk−1(st1⟨j⟩)K

(
st−k+1
1 ⟨j⟩

)
=Ψk−1(st1⟨i⟩)

[
K
(
st−k+1
1 ⟨i⟩

)
−K

(
st−k+1
1 ⟨j⟩

)]
+
[
Ψk−1(st1⟨i⟩)−Ψk−1(st1⟨j⟩)

]
K
(
st−k+1
1 ⟨j⟩

)
(A15)

Let B+ = maxs=0,1 ∥Bs∥ and R− = maxs=0,1 ∥(RsR
′
s)

−1∥. By Lemma A3,∥∥K (st−k+1
1 ⟨i⟩

)
−K

(
st−k+1
1 ⟨j⟩

)∥∥
≤
∥∥Ωt−k|t−k

(
st−k1 ⟨i⟩

)
− Ωt−k|t−k

(
st−k1 ⟨j⟩

)∥∥B+R−

×
[
1 +B+R−

(
B+ +

∥∥Ωt−k|t−k
(
st−k1 ⟨i⟩

)
− Ωt−k|t−k

(
st−k1 ⟨j⟩

)∥∥)]
Applying Lemma 5, we have ∥Ωt−k|t−k(s

t−k
1 ⟨i⟩)−Ωt−k|t−k(s

t−k
1 ⟨j⟩)∥ ≤ cδ exp(−2c2(r−k−

1)), and thus

∥∥K (st−k+1
1 ⟨i⟩

)
−K

(
st−k+1
1 ⟨j⟩

)∥∥ ≤ cδK exp(−2c2(r − k − 1))

where cδK = cδB+R−[1 + B+R−(B+ + 2cΩ)]. Together with Lemma 1, the whole first
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term of equation (A15) is bounded by∥∥Ψk−1(st1⟨i⟩)
[
K
(
st−k+1
1 ⟨i⟩

)
−K

(
st−k+1
1 ⟨j⟩

)]∥∥
≤c1 exp(−c2(k − 1))× cK exp(−2c2(r − k − 1))

≤c3 exp(−c2(2r − k − 3))

where c3 = max{c1, cK} is a positive constant. For the second term of (A15), note that

Ψ(st1⟨i⟩)−Ψ(st1⟨j⟩) =
(
I −K(st1⟨i⟩)Bst

)
Ast −

(
I −K(st1⟨j⟩)Bst

)
Ast

=
(
−K(st1⟨i⟩) +K(st1⟨j⟩)

)
BstAst

(A16)

Then,

Ψk−1(st1⟨i⟩)−Ψk−1(st1⟨j⟩) = Ψ(st1⟨i⟩)Ψk−2(st−1
1 ⟨i⟩)−Ψ(st1⟨j⟩)Ψk−2(st−1

1 ⟨j⟩)

=Ψ(st1⟨i⟩)
(
Ψk−2(st−1

1 ⟨i⟩)−Ψk−2(st−1
1 ⟨j⟩)

)
+
(
Ψ(st1⟨i⟩)−Ψ(st1⟨j⟩)

)
Ψk−2(st−1

1 ⟨j⟩)

= · · ·

=
k−1∑
l=1

Ψl−1(st1⟨i⟩)
(
Ψ(st−l1 ⟨i⟩)−Ψ(st−l1 ⟨j⟩)

)
Ψk−1−l(st−l1 ⟨j⟩)

Consequently, we have∥∥Ψk−1(st1⟨i⟩)−Ψk−1(st1⟨j⟩)
∥∥

≤
k−1∑
l=1

∥∥Ψl−1(st1⟨i⟩)
∥∥× ∥∥Ψ(st−l1 ⟨i⟩)−Ψ(st−l1 ⟨j⟩)

∥∥× ∥∥Ψk−1−l(st−l1 ⟨j⟩)
∥∥

≤
k−1∑
l=1

c21cδK max
s

{∥Bs∥ · ∥As∥} exp (−c2(2r + k − 2l − 2))

≤c4 exp (−c2(2r + k − 2))
exp(2c2) [1− exp(2c2(k − 1))]

1− exp(2c2)

=
c4

1− exp(2c2)
exp(−2c2(r − 1)) [exp(−c2(k − 2))− exp(c2k)]

where c4 = c21cδK maxs{∥Bs∥ · ∥As∥}. Then, the second term of (A15) is bounded by∥∥(Ψk−1(st1⟨i⟩)−Ψk−1(st1⟨j⟩)
)
K
(
st−k+1
1 ⟨j⟩

)∥∥
≤ c4cK
1− exp(2c2)

exp(−2c2(r − 1)) [exp(−c2(k − 2))− exp(c2k)]
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Substituting them all together in equation (A14) yields∥∥x∗t|t − xt|t(s
t
1⟨j⟩)

∥∥
≤2c1 exp(−c2(r − 1)) ·

∥∥xt−r+1|t−r+1(s
t−r
1 ⟨j⟩)

∥∥+ r−1∑
k=1

c3 exp(−c2(2r − k − 3))∥yt−k+1∥

+
r−1∑
k=1

c4cK
1− exp(2c2)

exp(−2c2(r − 1)) [exp(−c2(k − 2))− exp(c2k)]× ∥yt−k+1∥

≤ exp(−c2(r − 1))

[
2c1
∥∥xt−r+1|t−r+1(s

t−r+1
1 ⟨j⟩)

∥∥+ r−1∑
k=1

c3 exp(−c2(r − k − 2)) ∥yt−r+1∥

+
r−1∑
k=1

c4cK
1− exp(2c2)

exp(−c2(r − 1)) [exp(−c2(k − 2))− exp(c2k)]× ∥yt−r+1∥

]
≡ exp(−c2(r − 1))m2,t

Using this and (A13), equation (A12) becomes

δxt (s
t
t−r+2, s

t−r
1 ) ≤ exp(−c2(r − 1))mt

wheremt = m1,t +m2,t. It remains to see the stochastic boundedness ofmt. By Lemma
A2, E0|m1,t| ≤ c1(∥xt−r+1|t−r+1(i, s

t−r
1 )∥+ ∥xt−r+1|t−r+1(j, s

t−r
1 )∥ ≤ 2c1cx <∞. Form2,t,

E0|m2,t|

≤2c1E0

∥∥xt−r+1|t−r+1(s
t−r+1
1 ⟨j⟩)

∥∥+ ∥µy∥
r−1∑
k=1

c3 exp(−c2(r − k − 2))

+ ∥µy∥
r−1∑
k=1

c4cK exp(−c2(r − 1))

1− exp(2c2)
[exp(−c2(k − 2))− exp(c2k)]

≤2c1cx + ∥µy∥c3
exp(−c2(r − 3))− exp(−2c2)

1− exp(c2)

+ ∥µy∥
c4cK exp(−c2(r − 1))

1− exp(2c2)

[
exp(c2)[1− exp(−c2(r − 1))]

1− exp(−c2)
− exp(c2)[1− exp(c2(r − 1))]

1− exp(c2)

]
≤2c1cx + ∥µy∥c3

− exp(−2c2)

1− exp(c2)
+ ∥µy∥

c4cK
1− exp(2c2)

exp(c2)

1− exp(c2)

<∞

By Markov inequality, E0|mt| = E0|m1,t +m2,t| <∞ impliesmt = Op(1).

Using Lemmas A7 and A8, we can establish the proposition claiming that the updated
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mean and variance from the truncated and exact filters are asymptotically equivalent.

PROPOSITIONA1. Let∆Ω
r,t(s

t
1) = Ω̄t|t(s

t
t−r+2)−Ωt|t(s

t
1) and∆x

r,t(s
t
1) = x̄t|t(s

t
t−r+2)−xt|t(st1).

Then, there exist positive constants cΩ,∆ and c2 as well as a positive stochastically bounded
random variableMx,t such that

max
st1

∥∆Ω
r,t(s

t
1)∥ ≤ cΩ,∆ exp(−2c2(r − 1))

max
st1

∥∆x
r,t(s

t
1)∥ ≤Mx,t exp(−c2(r − 1))

PROOF. Take any st1. By applying the truncation step to Ω̄t|t(s
t
t−r+2) and x̄t|t(stt−r+2),

∆Ω
r,t(s

t
1) =pr(st−r+1|stt−r+2,Ft)

(
Ω̄t|t(s

t
t−r+1)− Ωt|t(s

t
1)
)

+
∑

s∗ ̸=st−r+1

pr(st−r+1 = s∗|stt−r+2,Ft)
(
Ω̄(st−r+1 = s∗, stt−r+2)− Ω(st1)

)
=pr(st−r+1|stt−r+2,Ft)Ψ̄(stt−r+1)

(
Ω̄t−1|t−1(s

t−1
t−r+1)− Ωt−1|t(s

t−1
1 )

)
Ψ(st1)

′

+
∑

s∗ ̸=st−r+1

pr(st−r+1 = s∗|stt−r+2,Ft)
(
Ω̄(st−r+1 = s∗, stt−r+2)− Ω(st1)

)
=pr(st−r+1|stt−r+2,Ft)Ψ̄(stt−r+1)∆

Ω
r,t−1(s

t−1
1 )Ψ(st1)

′

+
∑

s∗ ̸=st−r+1

pr(st−r+1 = s∗|stt−r+2,Ft)
(
Ω̄(st−r+1 = s∗, stt−r+2)− Ω(st1)

)
and

∆x
r,t(s

t
1) =pr(st−r+1|stt−r+2,Ft)

(
x̄t|t(s

t
t−r+1)− xt|t(s

t
1)
)

+
∑

s∗ ̸=st−r+1

pr(st−r+1 = s∗|stt−r+2,Ft)
(
x̄(st−r+1 = s∗, stt−r+2)− x(st1)

)
=pr(st−r+1 = s∗|stt−r+2,Ft)[Ψ(st1)

(
x̄t−1|t−1(s

t−1
t−r+1)− xt−1|t−1(s

t−1
1 )

)︸ ︷︷ ︸
=∆x

r,t−1(s
t−1
1 )

+
(
Ψ̄(stt−r+1)−Ψ(st1)

)
x̄t−1|t−1(s

t−1
t−r+1)

]
+

∑
s∗ ̸=st−r+1

pr(st−r+1 = s∗|stt−r+2,Ft)
(
x̄(st−r+1 = s∗, stt−r+2)− x(st1)

)
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Sequentially applying these expressions and using Lemmas A7 and A8 yield

∥∆Ω
r,t(s

t
1)∥

≤∥Ψ̄r−1(stt−r+1)∥ · ∥Ψr−1(st1)∥ · ∥∆Ω
r,t−r+1(s

t−r+1
1 )∥

+
r−1∑
k=1

∥Ψ̄k−1(stt−r+1)∥ · ∥Ψk−1(st1)∥ ·max
s∗

∥Ω(st−k+1
t−r+3−k, st−r+2−k = s∗, st−r+1−k

1 )− Ω(st1)∥

≤2c+Ωc
2
1 exp(−2c2(r − 1)) + cδ exp(−2c2(r − 1))

(
1 +

c21 exp(−2c2)

1− exp(−2c2)

)
=c∆ exp(−2c2(r − 1))

where cΩ,∆ = 2c+Ωc
2
1 + cδ(1 +

c21 exp(−2c2)

1−exp(−2c2)
) and

∥∆x
r,t(s

t
1)∥

≤∥Ψr−1(st1)∥ · ∥∆x
1,t−r+1(s

t−r+1
1 )∥+

r−1∑
k=1

∥Ψk−1(st1)∥ · ∥Ψ̄(st−k+1
t−r+1)−Ψ(st−k+1

1 )∥ · ∥x̄t−k|t−k(st−kt−r+1)∥

+
r−1∑
k=1

∥Ψk−1(st1)∥ ·max
s∗

∥x(st−r+2−k = s∗, st−k+1
t−r+3−k, s

t−r+1−k
1 )− x(st−k+1

1 )∥

≤2cxc1 exp(−c2(r − 1))

+
r−1∑
k=1

c1c4
1− exp(2c2)

exp(−c2(2r + k − 3)) [exp(−c2(k − 2))− exp(c2k)]
∥∥x̄t−k|t−k(st−kt−r+1)

∥∥
+

r−1∑
k=1

c1 exp(−c2(k − 1))× exp(−c2(r − 1))mt−k+1

≤ exp(−c2(r − 1))Mx,t

where

Mx,t =2cxc1 +
r−1∑
k=1

c1c4
1− exp(2c2)

[exp(−c2(r + 2k − 4)− exp(−c2(r − 2))] ∥x̄t−k|t−k(st−kt−r+1)∥

+
r−1∑
k=1

c2 exp(−c2(k − 1))mt−k+1

where E0|Mx,t| is finite, which impliesMx,t = Op(1) by the Markov’s inequality.

Applying the forecasting step at period t+ 1, we obtain the following corollary.

COROLLARYA1. Let∆Σ
r,t+1(s

t+1
1 ) = Σ̄t+1|t(s

t+1
t−r+2)−Σt+1|t(s

t+1
1 ) and∆y

r,t+1(s
t+1
1 ) = ȳt+1|t(s

t+1
t−r+2)−
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yt+1|t(s
t+1
1 ). Then, there exist positive constants cΣ,∆ and c2 as well as a positive stochastically

bounded random variableMy,t such that

max
st+1
1

∥∆Σ
r,t+1(s

t+1
1 )∥ ≤ cΣ,∆ exp(−2c2(r − 1))

max
st+1
1

∥∆y
r,t+1(s

t+1
1 )∥ ≤My,t exp(−c2(r − 1))

B.1.3. Per-Period Likelihood

We are now ready to evaluate the difference of the per-period likelihood in the second
line of (4), | log pr(yt|stt−r+1,Ft−1)− log p(yt|st1,Ft−1)|.

PROPOSITION A2. There exists a positive stochastically bounded random variableNt such
that

max
st1

∣∣log pr(yt|stt−r+2,Ft−1)− log p(yt|st1,Ft−1)
∣∣ ≤ exp(−c2(r − 1))Nt

PROOF. Take any st1. Note that pr(yt|stt−r+2,Ft−1) = ϕ(yt; ȳt|t−1(s
t
t−r+2), Σ̄t|t−1(s

t
t−r+2))

and p(yt|st1,Ft−1) = ϕ(yt; yt|t−1(s
t
1),Σt|t−1(s

t
1)). Then we have∣∣log pr(yt|stt−r+2,Ft−1)− log p(yt|st1,Ft−1)

∣∣
≤1

2

∣∣log (det Σ̄t|t−1(s
t
t−r+2)

)
− log

(
detΣt|t−1(s

t
1)
)∣∣

+
1

2

∣∣∣(yt − ȳt|t−1(s
t
t−r+2)

)′
Σ̄t|t−1(s

t
t−r+2)

−1
(
yt − ȳt|t−1(s

t
t−r+2)

)
−
(
yt − yt|t−1(s

t
1)
)′
Σt|t−1(s

t
1)

−1
(
yt − yt|t−1(s

t
1)
)∣∣∣

Without loss of generality, let det Σ̄t|t−1(s
t
t−r+2) ≥ detΣt|t−1(s

t
1). Due to | log x− log y| ≤
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|x−y|
x∧y and Lemma A4, the first term can be written as

∣∣log (det Σ̄t|t−1(s
t
t−r+2)

)
− log

(
detΣt|t−1(s

t
1)
)∣∣

≤
det Σ̄t|t−1(s

t
t−r+2)− detΣt|t−1(s

t
1)

detΣt|t−1(st1)

≤
(
1 +

∥∥Σt|t−1(s
t
1)

−1
∥∥ · ∥∥Σ̄t|t−1(s

t
t−r+2)− Σt|t−1(s

t
1)
∥∥)dy − 1

≤
(
1 +R−

∥∥∆Ω
r,t(s

t
1)
∥∥)dy − 1

= exp(−c2(r − 1))

dy∑
d=1

(
dy

d

)
(R−cΣ,∆ exp(−c2(r − 1)))d

≤ exp(−c2(r − 1))

dy∑
d=1

(
dy

d

)
(R−cΣ,∆ exp(c2))

d ≡ exp(−c2(r − 1))c5

We decompose the expression in the second and third lines as(
yt − ȳt|t−1(s

t
t−r+2)

)′ (
Σ̄t|t−1(s

t
t−r+2)

−1 − Σt|t−1(s
t
1)

−1
) (
yt − ȳt|t−1(s

t
t−r+2)

)
+y′tΣt|t−1(s

t
1)

−1
(
−ȳt|t−1(s

t
t−r+2) + yt|t−1(s

t
1)
)

+
(
−ȳt|t−1(s

t
t−r+2) + yt|t−1(s

t
1)
)′
Σt|t−1(s

t
1)

−1yt

+
(
ȳt|t−1(s

t
t−r+2)− yt|t−1(s

t
1)
)′
Σt|t−1(s

t
1)

−1yt|t−1(s
t
1)

+ȳt|t−1(s
t
t−r+2)

′Σt|t−1(s
t
1)

−1
(
ȳt|t−1(s

t
t−r+2)− yt|t−1(s

t
1)
)

The second and third terms are bounded by exp(−c2(r − 1))Mx,t∥yt∥ whereMx,t∥yt∥ =

Op(1) as the product of twoOp(1) terms. Similarly, the fourth andfifth terms are bounded
by exp(−c2(r − 1))R−Mx,t∥yt|t−1∥ whereMx,t∥yt|t−1∥ = Op(1) due to Lemma A2. Regard-
ing the first term, note that

Σ̄t|t−1(s
t
t−r+2)

−1 − Σt|t−1(s
t
1)

−1 = Σ̄t|t−1(s
t
t−r+2)

−1
(
Σt|t−1(s

t
1)− Σ̄t|t−1(s

t
t−r+2)

)
Σt|t−1(s

t
1)

−1

and then∣∣∣(yt − ȳt|t−1(s
t
t−r+2)

)′ (
Σ̄t|t−1(s

t
t−r+2)

−1 − Σt|t−1(s
t
1)

−1
) (
yt − ȳt|t−1(s

t
t−r+2)

)∣∣∣
≤ exp(−c2(r − 1))cΣ,∆R

2
−∥yt − ȳt|t−1(s

t
t−r+2)∥2

where ∥yt − ȳt|t−1(s
t
t−r+2)∥2 = Op(1). Hence, we have∣∣log p̄(yt|yt−1

1 , stt−r+2)− log p(yt|yt−1
1 , st1)

∣∣ ≤ exp(−c2(r − 1))Nt
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whereNt = Op(1).

B.1.4. Transition Probability

We consider the difference between the log transition probabilities obtained from the
exact and approximated filters.

pr(st = 0|st−1 = 0, st−2
t−r+1, Ft−1)

=
Φ
(
−τι; Λx̄t−1|t−1(s

t−2
t−r+1), I + ΛΩ̄t−1|t−1(s

t−2
t−r+1)Λ

′)
Φ
(
−τ ;λ′

(
x̄t−1|t−1(s

t−2
t−r+1)

)
(dx+1:2dx)

, 1 + λ′
(
Ω̄t−1|t−1(s

t−2
t−r+1)

)
(dx+1:2dx,dx+1:2dx)

λ
)

p(st = 0|st−1 = 0, st−2
1 , Ft−1)

=
Φ
(
−τι; Λxt−1|t−1(s

t−2
1 ), I + ΛΩt−1|t−1(s

t−2
1 )Λ′)

Φ
(
−τ ;λ′

(
xt−1|t−1(s

t−2
1 )

)
(dx+1:2dx)

, 1 + λ′
(
Ωt−1|t−1(s

t−2
1 )

)
(dx+1:2dx,dx+1:2dx)

λ
)

PROPOSITION A3. There exists a positive stochastically bounded random variableNTP,t such
that

max
st1

|pr(st|st−1
t−r+1,Ft−1)− p(st|st−1

1 ,Ft−1)| ≤ NTP,t exp(−c2(r − 1))

PROOF. Consider st = 0 and st−1 = 0. The probabilities for other combinations of
(st, st−1) follow similarly. Define f : R2 × R3 → [0, 1] as

f(x, vech(L)) =
Φ2 (−τι;x, LL′)

Φ1

(
−τ ;x2, (LL′)(2,2)

)
=

Φ2 (L
−1(−τι− x))

Φ1

(
((LL′)(2,2))−1/2(−τ − x2)

)
where x = [x1, x2]

′ and L is a 2× 2 lower triangular matrix. It obviously follows that

f
(
Λx̄t−1|t−1(s

t−2
t−r+1), vech

((
I + ΛΩ̄t−1|t−1(s

t−2
t−r+1)Λ

′)1/2)) = pr(st = 0|st−1 = 0, st−2
t−r+1,Ft−1)

and

f

(
Λx̃t−1|t−1(s

t−2
1 ), vech

((
I + ΛΩ̃t−1|t−1(s

t−2
1 )Λ′

)1/2))
= p(st = 0|st−1 = 0, st−2

1 ,Ft−1)
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Let µt−1|t−1(s
t−2
1 ) = Λxt−1|t−1(s

t−2
1 ) and Vt−1|t−1(s

t−2
1 ) = I + ΛΩ(st−2

1 )Λ′, and define
µ̄t−1|t−1(s

t−2
t−r+1) and V̄t−1|t−1(s

t−2
t−r+1) similarly. We apply the mean value theorem to f

around (µt−1|t−1(s
t−2
1 ), Vt−1|t−1(s

t−2
1 )). There exists a constant α ∈ (0, 1) such that

pr(st = 0|st−1 = 0, st−2
t−r+1,Ft−1) = p(st = 0|st−1 = 0, st−2

1 ,Ft−1)

+
(
∇f(µ†

t−1|t−1(s
t−2
1 ), vech(V †(st−2

1 )1/2))
)′ [ µ̄t−1|t−1(s

t−2
t−r+1)− µt−1|t−1(s

t−2
1 )

vech(V̄t−1|t−1(s
t−2
t−r+1)

1/2)− vech(Vt−1|t−1(s
t−2
1 )1/2)

]
(A17)

where µ†
t−1|t−1(·) = αµ̄t−1|t−1(·) + (1 − α)µt−1|t−1(·) and V †

t−1|t−1(·)1/2 = αV̄t−1|t−1(·)1/2 +
(1− α)Vt−1|t−1(·)1/2.

Let L = [ℓij]i,j=1,2 with ℓ12 = 0. Note that

Φ2

(
L−1(−τι− x)

)
=Φ1

(
− 1

ℓ11
(τ + x1)

)
Φ1

(
ℓ21
ℓ11ℓ22

(τ + x1)−
1

ℓ22
(τ + x2)

)
:=Φ1 (z1) Φ1 (z2)

and

Φ1

(
((LL′)(2,2))

−1/2(−τ − x2)
)
=Φ1

(
− 1

ℓ221 + ℓ222
(τ + x2)

)
:=Φ1 (z3)

The derivative of f with respect to x1 is given by

∂

∂x1
f(x, vech(L)) =

1

(Φ1 (z3))
2

(
Φ1 (z2)ϕ1 (z1)×

d

dx1
z1 + Φ1 (z1)ϕ1 (z2)×

d

dx1
z2

)
Since z3 is Op(1) for any α, so is (Φ1(z3))

2. The derivatives d
dx1
z1 and d

dx1
z2 are also Op(1).

Hence the whole expression is Op(1). The remaining derivatives can be shown to be
Op(1) similarly. Therefore, the gradient in (A17) is Op(1).

Using Proposition A1, it follows that

max
st−2
1

∥∥Ω̄t−1|t−1(s
t−2
t−r+1)− Ωt−1|t−1(s

t−2
1 )

∥∥ ≤ cΩ,∆,2 exp(−2c2(r − 1))

max
st−2
1

∥∥x̄t−1|t−1(s
t−2
t−r+1)− xt−1|t−1(s

t−2
1 )

∥∥ ≤Mx,t,2 exp(−c2(r − 1))

where cΩ,∆,2 is a positive constant and Mx,t,2 is a positive and stocastically bounded
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random variable.
We can deduce ∥∥µ̄t−1|t−1(s

t−2
t−r+1)− µt−1|t−1(s

t−2
1 )

∥∥
1

≤
√
2
∥∥µ̄t−1|t−1(s

t−2
t−r+1)− µt−1|t−1(s

t−2
1 )

∥∥
2

≤
√
2∥Λ∥

∥∥x̄t−1|t−1(s
t−2
t−r+1)− xt−1|t−1(s

t−2
1 )

∥∥
2

where we have used ∥a∥1 ≤
√
n∥a∥2 holding for an n× 1 vector a. Furthermore,

∥vech
(
V̄t−1|t−1(s

t−2
t−r+1)

1/2
)
− vech

(
Vt−1|t−1(s

t−2
1 )1/2

)
∥1

=∥V̄t−1|t−1(s
t−2
t−r+1)

1/2 − Vt−1|t−1(s
t−2
1 )1/2∥1

≤2∥V̄t−1|t−1(s
t−2
t−r+1)

1/2 − Vt−1|t−1(s
t−2
1 )1/2∥F

≤2∥V̄t−1|t−1(s
t−2
t−r+1)

1/2 − Vt−1|t−1(s
t−2
1 )1/2∥

≤2∥V̄t−1|t−1(s
t−2
t−r+1)− Vt−1|t−1(s

t−2
1 )∥1/2

≤2∥Λ∥
∥∥Ω̄t−1|t−1(s

t−2
t−r+1)− Ωt−1|t−1(s

t−2
1 )

∥∥1/2
where ∥ · ∥1, ∥ · ∥F , and ∥ · ∥ stand for the element-wise 1-norm, the Frobenius norm,
and the spectral norm of matrix respectively.

By log(1 + x) ≤ x for x > 0,

| log pr(st = 0|st−1 = 0, st−2
t−r+1,Ft−1)− log p(st = 0|st−1 = 0, st−2

1 ,Ft−1)|

≤

∣∣∣∣∣∣∣∣∣∣∣

(
∇f(µ†

t−1|t−1(s
t−2
1 ), vech(V †(st−2

1 )1/2))
)′ [ µ̄t−1|t−1(s

t−2
t−r+1)− µt−1|t−1(s

t−2
1 )

vech(V̄t−1|t−1(s
t−2
t−r+1)

1/2)− vech(Vt−1|t−1(s
t−2
1 )1/2)

]
p(st = 0|st−1 = 0, st−2

1 ,Ft−1)

∣∣∣∣∣∣∣∣∣∣∣
=Op(1)

[∥∥µ̄t−1|t−1(s
t−2
t−r+1)− µt−1|t−1(s

t−2
1 )

∥∥
1
+ ∥vech

(
V̄t−1|t−1(s

t−2
t−r+1)

1/2
)
− vech

(
Vt−1|t−1(s

t−2
1 )1/2

)
∥1
]

≤Op(1) exp (−c2(r − 1))

B.1.5. Proof of Proposition 1

By (4), we have
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| log pr,θ(yT1 |x1 = x̃, s1 = s̃)− log pθ(y
T
1 |x1 = x̃, s1 = s̃)|

≤
T∑

t=r+1

(
max
st2

∣∣log pr(yt|yt−1
1 , stt−r+1)− log p(yt|yt−1

1 , st1)
∣∣)

+
T∑

t=r+1

(
max
st2

∣∣log pr(st|st−1
t−r+1, y

t−1
1 )− log p(st|st−1

1 , yt−1
1 )

∣∣)

By Proposition A2, the term inside the first summation is bounded by exp(−c2(r− 1))Nt.
By Proposition A3, the term inside the second summation is bounded by exp(−c2(r −
1))NTP,t.

B.2. Proofs for Section 4

We define a k-local Doeblin set following Douc and Moulines (2012).

DEFINITION A1. Take k ∈ Z. A set C ∈ X is a k-local Doeblin set if there exist two positive
functions ε−C : (Rdy)k → R+ and ε+C : (Rdy)k → R+, a family of probability measures
{λθC⟨z⟩}θ∈Θ,z∈(Rdy )k , and a family of positive functions {φθC⟨z⟩}θ∈Θ,z∈(Rdy )k such that for any
θ ∈ Θ and z ∈ (Rdy)k, we have λθC⟨z⟩(C) = 1 and for any A ∈ X and ξ ∈ C, we have

ε−C(z)φ
θ
C⟨z⟩(ξ)λθC⟨z⟩(A) ≤ L⟨z⟩(ξ, A ∩ C) ≤ ε+C(z)φ

θ
C⟨z⟩(ξ)λθC⟨z⟩(A) (A18)

where L⟨yk1⟩(ξ1, A) =
∫
· · ·
∫ [∏k

i=1 ϕ (yi;BsiRiR
′
i)Q

θ(dξi+1|ξi, yi)
]
1A(ξk+1) is the transi-

tion kernel of (ξt) given the observations yk1 .

The following lemma verifies Assumption (A1) by Douc and Moulines (2012).

LEMMA A9. Assume Assumptions A1 and 4. There exists k ∈ Z and a setK ∈ (B(Rdy))k with
the following properties.

(i) P
[
Y k
1 ∈ K

]
> 2/3

(ii) Take any η > 0. There exists a r-local Doeblin set C ∈ B(Rdx) × σ(S) such that for
any θ ∈ Θ and yk1 ∈ K, we have

sup
ξ1∈CC

pθδξ1
(yk1) ≤ η sup

ξ1∈Rdx×S
pθδξ0

(yk1) <∞ (A19)
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where δξ1 is the Dirac measure concentrated at ξ1, and

inf
yk1∈K

ε−C(y
k
1)

ε+C(y
k
1)
> 0 (A20)

(iii) There exists a setD ∈ B(Rdx)× σ(S) such that

E
[
log− inf

θ∈Θ
inf
ξ∈D

L⟨Y k
1 ⟩(ξ,D)

]
<∞

PROOF. Take a set K so that P
[
Y k
1 ∈ K

]
> 2/3. For any compact set C1 ∈ Rdx and

C2 ⊂ S, we will show that a compact set C = C1 × C2 is k-local Doeblin. Take any
A ∈ X . Define the measure λC(A) = µ(A∩C)

µ(C)
where µ denotes the Lebesgue measure. Let

φθ⟨yk1⟩(ξ) = 1. Let

ε−C⟨y
k
1⟩ =

k∏
i=1

inf
θ∈Θ

min
(x′,s)′∈C

ϕ(yi;Bsx,RsR
′
s)× inf

θ∈Θ
min

ξ1,··· ,ξk+1∈C

k∏
i=1

Qθ(ξi+1|ξi, yi)

ε+C⟨y
k
1⟩ =

k∏
i=1

sup
θ∈Θ

sup
(x′,s)′∈X

ϕ(yi;Bsx,RsR
′
s)× sup

θ∈Θ
sup

ξ1,··· ,ξr+1∈X

k∏
i=1

Qθ(ξi+1|ξi, yi)

By Assumption 4 and the fact that the normal density is positive and bounded, ε−C⟨yk1⟩
and ε+C⟨yk1⟩ are positive and bounded for any yk1 . Under these settings, (A18) is satisfied
for any ξ ∈ C and A ∈ X . Hence, C is a r-local Doeblin set. Note that

lim
|ξ|→∞

sup
yk1∈K

pθδξ(y
k
1) = lim

|ξ|→∞
sup
yk1∈K

L⟨yk1⟩(ξ,X)

= 0

because the normal density is bounded and qθ is bounded by 1. Since the choice of a
compact set C1 above was arbitrary, (A19) holds by taking C1 to be sufficiently large.
Since ε− and ε+ are positive and bounded, (A20) also holds.

To establish claim (iii), take any compact setD ∈ X . Define

F ≡ {yk1 ∈
(
Rdy
)k | − log inf

θ∈Θ
inf
ξ∈D

L⟨yk1⟩(ξ,D) ≥ 0}
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Then we have

E
[
log− inf

θ∈Θ
inf
ξ∈D

L⟨Y k
1 ⟩(ξ,D)

]
= E

[
max

{
− log inf

θ∈Θ
inf
ξ∈D

L⟨Y k
1 ⟩(ξ,D), 0

}]
= −

∫
F

log inf
θ∈Θ

inf
ξ∈D

L⟨Y k
1 ⟩(ξ,D)P(dY k

1 )

≤ −
∫
F

log
(
ε−D⟨Y

k
1 ⟩λD(D)

)
P(dY k

1 )

<∞

where the inequality on the third line comes from (A18) and the last inequality follows
because the terms inside the bracket on the third line are all positive and bounded for
any Y k

1 .

LEMMA A10. Assume Assumption 5. For any x ∈ X, the function θ 7→ pθδx(Y
T
1 ) is continuous

on Θ.

PROOF. It follows from the continuity of the function θ 7→ Qθ and of ϕ(yt;Bstxt, QstQ
′
st)

with respect to θ.

Proof of Proposition 2

PROOF. Theproposition follows fromProposition 1 andTheorem2 inDouc andMoulines
(2012). Note that their propositions continue to hold when the transition kernel of xt
depends on yt, i.e., replacingQθ(xi, dxi+1)withQθ(dξi+1|ξi, yi) in their equation (3). Thus,
what we have to check is whether assumptions (A1)–(A3) hold.

(A1) and (A3) follow from Lemmas A9 and A10 respectively. (A2) (i) holds because
the normal density is positive. (A2) (ii) also holds since the normal density is bounded
above.

Appendix C. Empirical Application

C.1. Model Description

This section describes the model used in the empirical application. The model is bor-
rowed from Bianchi and Ilut (2017) which studies the monetary/fiscal policy mix in the
post-WWII U.S. The economy consists of the infinitely lived representative household,
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firms subject to monopolistic competition and nominal price rigidity, and the govern-
ment operating monetary and fiscal policies. There are two binary variables spolt and svolt

which govern the policy stance and economic volatility respectively. The model here is
slightly different from Bianchi and Ilut (2017) since we do not include the AM/AF regime
because Bianchi and Ilut (2017) found the periods in which the government took this
policy stance very short. The shocks εxt (x ∈ {d, µ, a, tp, eL, eS, χ, τ, R}) are the standard
Gaussian random variables.

C.1.1. Household

The representative household chooses the stream of consumption, labor supply, and
bond holdings to maximize

E0

∞∑
t=0

βt exp(dt)
[
log(Ct − ΦCA

t−1)− ht
]

subject to

PtCt + Pm
t B

m
t +R−1

t Bs
t = PtWtht +Bs

t−1(1 + ρPm
t )Bm

t−1 + PtDt − Tt + TRt

where Ct is consumption, ht is labor supply, Pt is aggregate price level,Wt is real wage,
Dt is dividend income from the firms, and Tt and TRt are lump-sum tax and transfer
respectively. The preference includes external habit formationwhereCa

t−1 is the average
level of consumption at the last period. The term dt represents the preference shock
following

dt = ρddt−1 + σd(s
vol
t )εdt

The household can hold two types of assets, short-term government bondBs
t with return

Rt and long-term government debt Bm
t . The parameter ρ governs the average maturity

of the government debt.

C.1.2. Firms

There is a continuum of firms indexed by j ∈ [0, 1]. Facing monopolistic competition as
well as the Rotemberg-type nominal price rigidity, they choose price Pt(j) to maximize
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the present value of profits

E0

∞∑
t=0

Qt

[(
Pt(j)

Pt

)
Yt(j)−Wtht(j)− ACt(j)

]

subject to the demand curve

Yt(j) =

(
Pt(j)

Pt

)−1/νt

Yt

and the quadratic price adjustment cost proportional to the real output:

ACt(j) = 0.5φ

(
Pt(j)

Pt−1(j)
− Πς

t−1Π
1−ς
)2

Yt(j)Pt(j)

Pt

where Πt = Pt/Pt−1 and Π is its steady state value. The term νt is the inverse of the
elasticity of substitution connected with the markup shock ℵt = 1/(1− νt). The rescaled
markup shock µt = κ

1+ςβ
log(ℵt/ℵ) with κ = 1−ν

νφΠ2 follows the exogenous process µt =
ρµµt−1+σµ(s

vol
t )εµt . The sum of profits is discounted by the stochastic discount factorQt.

The production function is given by Yt(j) = Atht(j)
1−α with α ∈ [0, 1]. The total factor

productivity (TFP) At evolves as log(At/At−1) = γ + at where at = ρaat−1 + σa(s
vol
t )εat .

C.1.3. Fiscal Policy

The short-term government debt is assumed to have zero net supply. The intratemporal
government budget constraint is written as

Pm
t B

m
t = Bm

t−1(1 + ρPm
t )− Tt + Et + TPt

whereEt = PtGt+TRt is the total government expenditure which is the sum of nominal
government spending and transfer payment. The last term on the right hand side, TPt,
is the residual term which is necessary to avoid computational issues due to the fact
that we are using observations to characterize debt, tax, and expenditure. We divide
the government budget constraint by the nominal output PtYt to have

bmt =
bmt−1R

m
t−1,t

ΠtYt/Yt−1

− τt + et + tpt
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where xt = Xt/PtYt for any variable Xt and Rm
t−1, t = (1 + ρPm

t )/Pm
t−1. We assume

tpt = ρtptpt−1 + σtp(s
vol
t )εtpt . The expenditure is assumed to be decomposed by short-

term and long-term components: ẽt = ẽLt + ẽSt
19 where

ẽLt = ρeL ẽ
L
t−1 + σeL(s

vol
t )εe

L

t

ẽSt = ρeS ẽ
S
t−1 + (1− ρeS)ϕy (ŷt − ŷ∗t ) + σeS(s

vol
t )εe

S

t

where y∗t is (detrended) potential output in the absence of price rigidity. The fraction of
government spending to total expenditure, χt = PtGt/Et, is assumed to follow

χ̃t = ρχχ̃t−1 + (1− ρχ)ιy (ŷt − ŷ∗t ) + σχ(s
vol
t )εχt

We specify the tax rule using the regime-switching coefficients.

τ̃t = ρτ (s
pol
t )τ̃t−1 +

(
1− ρτ (s

pol
t )
) [
δb(s

pol
t )b̃mt−1 + δeẽt + δy (ŷt − ŷ∗t )

]
+ στ (s

vol
t )ετt

The coefficient on government debt, δb(spolt ) is one of the most important parameters in
the model which governs the responsiveness of fiscal policy to the increase of govern-
ment debt.

C.1.4. Monetary Policy

The monetary authority sets a nominal interest rate Rt based on the Taylor rule with
the regime-switching parameters.

Rt

R
=

(
Rt−1

R

)ρR(spolt )
[(

Πt

Π

)ψπ(s
pol
t )(

Yt
Y ∗
t

)ψy(s
pol
t )
]1−ρR(spolt )

exp
(
σR(s

vol
t )εRt

)
The parameter ψπ(spolt ) determines the strength of nominal interest rate adjustment
when observing a rise in the inflation rate.

19We denote x̂t = log((Xt/At)/(X/A)), percentage deviation of the detrended variable from the steady
state. For variables normalized by nominal GDP, we denote x̃t = xt − x. For the other variables, let
x̃t = log(Xt/X).
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C.1.5. Market Clearing

The final good market clearing requires

Yt = Ct +Gt

C.1.6. Regime Switching

As described in themain text, regime shifts for volatility captured by spolt occur following
a time-invariant transition probability matrix P vol.

P vol =

[
1− pvol1,2 pvol1,2

pvol2,1 1− pvol2,1

]

The policy regime indicator evolves based on our baseline regime rule.

spolt =

AM/PF if τ pol + λy
(
ŷt−1 − ŷ∗t−1

)
+ λππ̃t−1 + λRR̃t−1 + λbb̃t−1 + ηt ≥ 0

PM/AF otherwise

where ηt = ρηηt−1 + εη,t, εη,t ∼ N(0, 1). As shown by Chang et al. (2017), restricting all
λ to be zero implies the traditional Hamilton (1989) regime-switching structure with
time-invariant transition probabilities. I estimate the model with this restriction as well,
and label it “the exogenous switching model”.

C.2. Solving Model

The equilibrium conditions from the model above are summarized as

EtFst (xt−1, xt, xt+1) = 0

where xt is a collection of the variables in themodel and εt is a collection of the structural
shocks. To find the solution of the form

xt = gst(xt−1)
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the perturbation method proposed by Maih and Waggoner (2018) is employed. Adding
a perturbation parameter χ into the system, we seek to find

xt = gst(xt−1;χ)

which satisfies

Et

[
J∑
j=1

pij(xt;χ)Fi (gj (hi(xt−1;χ);χ) , gi(xt−1;χ), xt−1)

]
= 0

where pi,j(·) is the transition probability from st = i to st+1 = j, and hi(·) is the perturbed
policy function. This framework reduces to the original system when χ = 1, and the
steady state when χ = 0. Let xi = gi(xi; 0). Maih and Waggoner (2018) choose those
functions to be

pij(xt;χ) =

χpij(xt) if i ̸= j

χ (pij(xt)− 1) + 1 otherwise

and
hi(xt−1;χ) = gi (xt−1;χ) + (1− χ) (xj − xi)

This choice implies Fi(xi, xi, xi) = 0, and thus xi can be interpreted as the deterministic
steady state. Having these two functions, the standard perturbation method applies
and we can find the approximated solution. The policy function from the first order
perturbation does not exhibit feedback coefficients, while they appear in the regime
transition probabilities.

C.3. Sequential Monte Carlo Algorithm

This section lays out the sequential Monte Carlo algorithm to infer posterior distribu-
tions used in Section 6. See Herbst and Schorfheide (2014) and Herbst and Schorfheide
(2016) for detailed description.

C.3.1. Algorithm Overview

(1) Initialization: Draw the particles θi0 ∼ p(θ) where p(θ) is the prior distribution,
and setW i

0 = 1 for i = 1, · · · , N . Alternatively, the initial particles can be drawn
from a proposal distribution g(θ). In this case, incremental weights should be
adjusted by p(θ)/g(θ).
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(2) For n = 1, · · · , Nϕ,

(a) Correction step: Define

w̃in =
[
p(Y |θin−1)

]ϕn−ϕn−1 , i = 1, · · · , N

and we normalize this weight by

W̃ i
n =

w̃inW
i
n−1

N−1
∑N

j=1 w̃
j
nW

j
n−1

, i = 1, · · · , N

(b) Selection step: Calculate

ESSn =
N

N−1
∑N

i=1

(
W̃ n
i

)2
• When ESSn < N/2, resample the particles from the multinomial dis-
tribution characterized by the particles {θin−1}Ni=1 with the associated
weights {W̃ i

n}Ni=1. We define {θ̂in}Ni=1 to be N draws of particles from
the multinomial distribution described above. LetW i

n = 1 for any i =
1, · · · , N .

• Otherwise, let θ̂in = θin−1 andW i
n = W̃ i

n, i = 1, · · · , N .

(c) Mutation step: Compute mean θ∗n and variance Σ∗
n of the distribution char-

acterized by the particles {θin−1,W
i
n}Ni=1. Let

cn = cn−1f (1−Rn−1) , f(x) = 0.95 + 0.10
exp(16(x− 0.25))

1 + exp(16(x− 0.25))

where Rn−1 is the rejection rate at the previous stage. Generate the random
partition of the parameters {θn,b}Nblocks

b=1 . For any i = 1, · · · , N , run the block
Metropolis-Hastings algorithm forNMH times using the proposal distribu-
tion

θb|θin,b,m−1, θ
i
n,−b,m, θ

∗
n,b,Σ

∗
n,b ∼ωN

(
θin,b,m−1, c

2
nΣ

∗
n,b

)
+

1− ω

2
N
(
θin,b,m−1, c

2
ndiag(Σ∗

n,b)
)

+
1− ω

2
N
(
θ∗n,b, c

2
nΣ

∗
n,b

)
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where θin,b,m−1 is the parameter from the previous iteration of theMH, θin,−b,m
is the parameter outside the block b, and θ∗n,b and Σ∗

n,b are the partition of θ∗n
and Σ∗

n based on the block b respectively. This gives us the new particle θin.

C.3.2. Hyperparameters

The hyperparameters we have to choose a priori are (N,Nϕ, Nblocks, NMH , ω, {ϕn}
Nϕ

n=0).
We set N = 6, 000, Nϕ = 250, Nblocks = 3, NMH = 1, ω = 0.1, and ϕn = (n/Nϕ)

λ where
λ = 2.
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FIGURE A1. Impulse Response Functions to a Long-Term Expenditure Shock

C.4. Impulse Responses

This subsection investigates the impulse response functions to the three structural
shocks: long-term expenditure shock, monetary policy shock, and preference shock.
The responses are drawn under the condition that the policy regime stays the same for
40 quarters after the shock, but the agents take into account the possibility of regime
shifts as well as the feedback channel in the regime rule. You may find the discussion
overlappingwith Bianchi and Ilut (2017) because the economic intuition remains similar.

C.4.1. Long-Term Expenditure Shock

Figure A1 reports the responses to a positive long-term expenditure shock. If the agents
do not take into account the possibility of regime shifts, we observe an increase in
output followed by rising inflation under the PM/AF regime. Since the Taylor principle
is violated, the nominal interest rate does not increase as much as the rise in inflation.
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FIGURE A2. Impulse Response Functions to A Monetary Policy Shock

An expansion of the output and a decline in the real interest rate imply a lower debt
burden.

Under the AM/PF regime, on the contrary, the effect of the expenditure shock on
output and inflation is much smaller because of the Ricardian equivalence: The agents
expect increases in the tax rate in the future as the fiscal authority is responsible for
the government budget constraint. Despite the fiscal policy being disciplined under the
PF policy, the tax rate does not increase enough to keep the debt level at the original
level. Combined with the modest inflation, this leads to a hike in the debt-to-GDP ratio.

C.4.2. Monetary Policy Shock

Figure A2 displays the impulse response functions to a contractionary monetary policy
shock. The effect of the monetary policy shock on the inflation rate is qualitatively
different between the policy regime. In the AM/PF regime, the traditional channel in
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FIGURE A3. Impulse Response Functions to A Preference Shock

the New Keynesian model is at work: Since the Taylor principle holds, the real interest
rate goes up after the positive monetary policy shock, leading to the contraction of
consumption through intertemporal substitution, which finally causes the decline in
the inflation rate. On the contrary, the inflation rate goes up after an increase in the
nominal interest rate in the PM/AF regime. The debt burden increases because of the
contraction of output and the increase in the interest rate. This in turn implies a surge
of inflation to let the intertemporal government budget constraint holds.

C.4.3. Preference Shock

The impulse responses to a positive preference shock are shown in Figure A3. An
expansion in the output leads to inflation at impact. Under the PM/AF regime, the
inflation rate starts to decline after a while since the expansion makes the fiscal burden
smaller.
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